Расчет теплопотерь: показатели и калькулятор теплопотерь здания. Идеальный дом: расчет теплопотерь дома Простой расчет теплопотерь через ограждающие конструкции

Теплопотери определены для отапливаемых помещений 101, 102, 103, 201, 202 согласно плана этажей.

Основные теплопотери , Q (Вт), вычисляются по формуле:

Q = K × F × (t int - t ext) × n,

где: К – коэффициент теплопередачи ограждающей конструкцией;

F – площадь ограждающих конструкций;

n – коэффициент, учитывающий положение ограждающих конструкций по отношению к наружному воздуху, приняты согласно табл. 6 «Коэффициент, учитывающий зависимость положения ограждающей конструкции по отношению к наружному воздуху» СНиП 23-02-2003 «Тепловая защита зданий». Для перекрытия над холодными подвалами и чердачными перекрытиями согласно п. 2 n = 0,9.

Общие теплопотери

Согласно п. 2а прил. 9 СНиП 2.04.05-91* добавочные теплопотери рассчитываются в зависимости от ориентации: стены, двери и окна, обращенные на север, восток, северо-восток и северо-запад в размере 0,1, на юго-восток и запад - в размере 0,05; в угловых помещениях дополнительно - по 0,05 на каждую стену, дверь и окно, обращённые на север, восток, северо-восток и северо-запад.

Согласно п. 2г прил. 9 СНиП 2.04.05-91* добавочные теплопотери для двойных дверей с тамбурами между ними принимаются равными 0,27 H, где H – высота здания.

Теплопотери на инфильтрацию для жилых помещений, согласно прил. 10 СНиП 2.04.05-91* «Отопление, вентиляция и кондиционирование», приняты по формуле

Q i = 0,28 × L × p × c × (t int - t ext) × k,

где: L – расход удаляемого воздуха, не компенсируемый приточным воздухом: 1м 3 /ч на 1м 2 пло щади жилых помещений и кухни объемом более 60 м 3 ;

c – удельная теплоемкость воздуха, равная 1кДж / кг × °С;

p – плотность наружного воздуха при t ext равная 1,2 кг / м 3 ;

(t int - t ext) – разность внутренней и наружной температур;

k – коэффициент теплопередачи – 0,7.

Q 101 = 0,28 × 108,3 м 3 × 1,2кг / м 3 × 1кДж / кг × °С × 57 × 0,7 = 1452,5 Вт ,

Q 102 = 0,28 × 60,5м 3 × 1,2кг / м 3 × 1кДж / кг × °С × 57× 0,7 = 811,2 Вт ,

Бытовые поступления тепла рассчитываются из расчёта 10 Вт/м 2 поверхности пола жилых помещений.

Расчётные теплопотери помещения определены как Q расч = Q + Q i - Q быт

Ведомость расчёта теплопотерь помещений

помещения

Наименование помещения

Наименование ограждающей конструкции

Ориентация помещения

Размер ограждения, F , м 2

Площадь ограждения

(F ), м 2

Коэффициент теплопередачи, кВт/м 2 ° C

t вн - t нар , ° C

Коэффициент, n

Основные теплопотери

(Q осн. ),Вт

Добавочные теплопотери %

Коэффициент добавок

Общие теплопотери, (Q общ ), Вт

Расход тепла на инфильтрацию, (Q i ), Вт

Бытовые тепло- поступления, Вт

Расчетные теплопотери,

(Q расч. ), Вт

На ориентацию

прочие

Жилая

комната

Σ 1138,4

Жилая

комната

Σ 474,3

Жилая

комната

Σ 1161,4

Жилая

комната

Σ 491,1

Лестничная клетка

Σ 2225,2

НС – наружная стена, ДО – двойное остекление, ПЛ – пол, ПТ – потолок, НДД – наружная двойная дверь с тамбуром

ГЛАВА 3. ТЕПЛОВОЙ БАЛАНС ПОМЕЩЕНИЙ И ТЕПЛОЗАТРАТЫ НА ОТОПЛЕНИЕ ЗДАНИЙ

Расчетная мощность систем отопления

Тепловой режим может быть постоянным и переменным.

Постоянный - поддерживается круглосуточно в жилых, производственных с непрерывным режимом работы зданиях, детских и лечебных учреждениях, гостиницах, санаториях.

Переменный - в производственных зданиях с одно- и двухсменной работой, административных, торговых, учебных зданиях, предприятиях обслуживания. В нерабочее время используют имеющуюся систему отопления, или дежурное отопление - пониженная температура.

Тепловой баланс сводят в формуляр (табл. 3.1).

Таблица 3.1. Формуляр (бланк) теплового баланса

Если теплопотери больше тепловыделений, то требуется отопление.



Расчетная тепловая мощность системы отопления :

Q с,о = ∑Q пот - ∑Q пост, (3.1)

Если в производственном здании ∑Q пост >∑Q пот , то устраивается приточной вентиляции.

Теплопотери через ограждающие конструкции

Для определения теплопотери необходимо иметь:

Планы этажей со всеми строительными размерами;

Выкопировку из генплана с обозначением стран света и розы ветров;

Назначение каждого помещения;

Географическое место постройки здания;

Конструкции всех наружных ограждений.

Все помещения на планах обозначают:

Нумеруют слева направо, лестничные клетки обозначают буквами или римскими цифрами независимо от этажа и рассматривают как одно помещение.

Потери теплоты помещениями через ограждающие конструкции , с округлением до 10 Вт:

Q огр = (F/R о)(t в – t н Б)(1 + ∑β)n = kF(t в – t н Б)(1 - ∑β)n, (3.2)

где F , k , R o - расчетная площадь, коэффициент теплопередачи, сопротивление теплопередаче ограждающей конструкции, м 2 , Вт/(м 2 · оС), (м 2 · оС)/Вт; t в - расчетная температура воздуха помещения, о С; t н Б - расчетная температура наружного воздуха (Б) или температура воздуха более холодного помещения; п - коэффициент, учитывающий положение наружной поверхности ограждающих конструкций по отношению к наружному воздуху (табл. 2.4); β - добавочные потери теплоты в долях от основных потерь.

Теплообмен через ограждения между смежными отапливаемыми помещениями учитывается, если разность температур в них более 3°С.

Площади F , м 2 , ограждений (наружных стен (НС), окон (О), дверей (Д), фонарей (Ф), потолка (Пт), пола (П)) измеряются по планам и разрезам здания (рис. 3.1).

1. Высота стен первого этажа: если пол находится на грунте, - между уровнями полов первого и второго этажей (h 1 ); если пол на лагах - от наружного уровня подготовки пола на лагах до уровня пола второго этажа (h 1 1 ); при неотапливаемом подвале или подполье - от уровня нижней поверхности конструкции пола первого этажа до уровня чистого пола второго этажа (h 1 11 ), а в одноэтажных зданиях с чердачным перекрытием высота измеряется от пола до верха утепляющего слоя перекрытия.

2. Высота стен промежуточного этажа - между уровнями чистых полов данного и вышележащего этажей (h 2 ), а верхнего этажа - от уровня его чистого пола до верха утепляющего слоя чердачного перекрытия (h 3 ) или бесчердачного покрытия.

3. Длина наружных стен в угловых помещениях - от кромки наружного угла до осей внутренних стен (l 1 и l 2 l 3 ).

4. Длина внутренних стен - от внутренних поверхностей наружных стен до осей внутренних стен (m 1 ) или между осями внутренних стен (т).

5. Площади окон, дверей и фонарей - по наименьшим размерам строительных проемов в свету (а и b ).

6. Площади потолков и полов над подвалами и подпольями в угловых помещениях - от внутренней поверхности наружных стен до осей противоположных стен (m 1 и п ), а в неугловых - между осями внутренних стен (т ) и от внутренней поверхности наружной стены до оси противоположной стены (п ).

Погрешность линейных размеров - ±0,1 м, площади - ±0,1 м 2 .

Рис. 3.1. Схема обмера теплопередающих ограждений

Рис 3.2. Схема к определению потерь теплоты через полы и стены, заглубленные ниже уровня земли

1 - первая зона; 2 – вторая зона; 3 – третья зона; 4 – четвертая зона (последняя).

Потери теплоты через полы определяют по зонам-полосам шириной 2 м, параллельным наружным стенам (рис. 5.2).

Приведенное сопротивление теплопередаче R н.п, м 2 ·К/Вт, зон неутепленных полов на грунте и стен ниже уровня земли, с теплопроводностью λ > 1,2 Вт/(м· о С): для 1-й зоны - 2,1; для 2-й зоны - 4,3; для 3-й зоны - 8,6; для 4-й зоны (оставшейся площади пола) - 14,2.

Формула (3.2) при подсчете потерь теплоты Q пл , Вт, через пол, расположенный на грунте, принимает вид:

Q пл = (F 1 / R 1н.п +F 2 / R 2н.п +F 3 / R 3н.п +F 4 / R 4н.п)(t в – t н Б)(1 + ∑β)n, (3.3)

где F 1 - F 4 - площади 1 - 4 зон-полос, м 2 ; R 1,н.п - R 4,н.п - сопротивление теплопередаче зон пола, м 2 ·К/Вт; n =1.

Сопротивление теплопередаче утепленных полов на грунте и стен ниже уровня земли (λ < 1,2 Вт/(м· оС)) R y .п, м 2 · о С/Вт, определяют также для зон по формуле

R у.п = R н.п +∑(δ у.с. /λ у.с.) ,(3.4)

где R н.п - сопротивление теплопередаче зон неутепленного пола (рис. 3.2), м 2 · о С/Вт; сумма дроби - сумма термических сопротивлений утепляющих слоев, м 2 · о С/Вт; δ у.с - толщина утепляющего слоя, м.

Сопротивление теплопередаче полов на лагах R л, м 2 · о С/Вт:

R л.п = 1,18 (R н.п +∑(δ у.с. /λ у.с.)) ,(3.5)

Утепляющие слои - воздушная прослойка и дощатый пол на лагах.

При подсчете потерь теплоты, участки полов в углах наружных стен (в первой двухметровой зоне) вводится в расчет дважды по направлению стен.

Теплопотери через подземную часть наружных стен и полы отапливаемого подвала подсчитываются так же по зонам шириной 2 м, с отсчетом их от уровня земли (см. рис. 3.2). Тогда полы (при отсчете зон) рассматриваются как продолжение подземной части наружных стен. Сопротивление теплопередаче определяется так же, как и для неутепленных или утепленных полов.

Добавочные теплопотери через ограждения. В (3.2) член (1+∑β) учитывает добавочные теплопотери в долях от основных теплопотерь:

1. На ориентацию по отношению к странам света. β наружных вертикальных и наклонных (вертикальная проекция) стен, окон и дверей.

Рис. 3.3. Добавка к основным теплопотерям в зависимости от ориентации ограждений по отношению к странам света

2. На продуваемость помещений с двумя наружными стенами и более. В типовых проектах через стены, двери и окна, обращенные на все страны света β = 0,08 при одной наружной стене и 0,13 для угловых помещений и во всех жилых помещениях.

3. На расчетную температуру наружного воздуха. Для необогреваемых полов первого этажа над холодными подпольями зданий в местностях с t н Б минус 40°С и ниже - β = 0,05.

4. На подогрев врывающегося холодного воздуха. Для наружных дверей, без воздушных или воздушно-тепловых завес, при высоте здания Н , м:

- β = 0,2 Н - для тройных дверей с двумя тамбурами между ними;

- β = 0,27 Н - для двойных дверей с тамбуром между ними;

- β = 0,34 Н - для двойных дверей без тамбура;

- β = 0,22 Н - для одинарных дверей.

Для наружных не оборудованных ворот β =3 без тамбура и β = 1 - с тамбуром у ворот. Для летних и запасных наружных дверей и ворот β = 0.

Потери теплоты через ограждающие конструкции помещений вписывают в формуляр (бланк) (табл. 3.2).

Таблица 3.2. Формуляр (бланк) расчета теплопотерь

Площади стен в расчете измеряют с площадью окон, таким образом, площадь окон учитывают дважды, поэтому в графе 10 коэффициент k окон принимают как разность его значений для окон и стен.

Расчета потерь теплоты проводят по помещениям, этажам, зданию.

НОРМАТИВНЫЙ МЕТОД РАСЧЕТА ТЕПЛОПОТЕРЬ ЧЕРЕЗ ОГРАЖДАЮЩИЕ КОНСТРУКЦИИ

Лекция 8. Цель лекции: Расчет основных и дополнительных теплопотерь через различные ограждающие конструкции.

Расчетные теплопотери через ограждения определяются по формуле, учитывающей основные теплопотери при стационарном режиме и дополнительные, определяемые в долях единицы от основных:

Q огр = å(F i / R о i пр)(t п - t н) n i (1 + åb i), (6.1)

где R о i пр – приведенное сопротивление теплопередаче ограждения, учитывающее неоднородность слоев в толщине конструкции стены (пустоты, ребра, связи);

n i – коэффициент, учитывающий фактическое понижение расчетной разности температур (t п - t н) для ограждений, которые отделяют отапливаемое помещение от неотапливаемого (подвал, чердак и др.). Определяется по СНиП « Строительная теплотехника»;

b i – коэффициент, учитывающий дополнительные теплопотери через ограждения;

F i – площадь ограждения;

t п – температура помещения, при расчетах в условиях конвективного отопления принимают t п = t в , которая дается в СНиП для рабочей зоны высотой до 4 м. В производственных помещениях высотой более 4 м в связи с неравномерностью температуры по высоте принимают: для пола и вертикальных ограждений на высоту до 4 м от пола – нормируемую температуру в рабочей зоне t р.з ; для стен и окон, расположенных выше 4 м от пола – среднюю температуру воздуха по высоте помещения: t ср = (t р.з + t в) / 2; для покрытия и световых фонарей – температуру воздуха в верхней зоне t в.з (при воздушном отоплении на 3 о С выше температуры в рабочей зоне); в других случаях: t в.з = t р.з + D(h - 4);

t н = t н.5 – расчетная температура наружного воздуха на отопление.

Теплообмен между соседними помещениями учитывается только при разности температур в них на 3 и более градуса.

6.1.1 Определение температуры в неотапливаемом помещении

Обычно температуру в неотапливаемых помещениях для определения теплопотерь не рассчитывают. (Теплопотери определяют по приведенной выше формуле (6.1) с учетом коэффициента n ).

При необходимости, эта температура может быть определена из уравнения теплового баланса:

Теплопотери из отапливаемого в неотапливаемое помещение:

Q 1 =å(F 1 / R 1) (t в - t нх);

Теплопотери из неотапливаемого помещения:

Q 2 =å(F 2 / R 2) (t нх - t н);

где t нх – температура неотапливаемого помещения (тамбура, подвала, чердака, фонаря);

å R 1 ,åF 1 – коэффициенты сопротивления теплопередаче и площади внутренних ограждений (стена, дверь);

å R 2 ,åF 2 – коэффициенты сопротивления теплопередаче и площади наружных ограждений (наружных дверей, стен, потолка, пола).


6.1.2 Определение расчетной поверхности ограждения

Площадь ограждения и линейные размеры ограждений вычисляются на основании нормативных указаний, которые при использовании простейших формул дают возможность учитывать в определенной мере сложность процесса теплопередачи.

Схема обмера ограждений показания на рисунке 6.1.


Первый шаг в организации отопления частного дома — расчет теплопотерь. Цель этого расчета — выяснить, сколько тепла уходит наружу сквозь стены, полы, кровлю и окна (общее название — ограждающие конструкции) при самых суровых морозах в данной местности. Зная, как рассчитать теплопотери по правилам, можно получить довольно точный результат и приступить к подбору источника тепла по мощности.

Базовые формулы

Чтобы получить более-менее точный результат, необходимо выполнять вычисления по всем правилам, упрощенная методика (100 Вт теплоты на 1 м² площади) здесь не подойдет. Общие потери теплоты зданием в холодное время года складываются из 2 частей:

  • теплопотерь через ограждающие конструкции;
  • потерь энергии, идущей на нагрев вентиляционного воздуха.

Базовая формула для подсчета расхода тепловой энергии через наружные ограждения выглядит следующим образом:

Q = 1/R х (t в — t н) х S х (1+ ∑β). Здесь:

  • Q — количество тепла, теряемого конструкцией одного типа, Вт;
  • R — термическое сопротивление материала конструкции, м²°С / Вт;
  • S — площадь наружного ограждения, м²;
  • t в — температура внутреннего воздуха, °С;
  • t н — наиболее низкая температура окружающей среды, °С;
  • β — добавочные теплопотери, зависящие от ориентации здания.

Термическое сопротивление стен либо кровли здания определяется исходя из свойств материала, из которого они сделаны, и толщины конструкции. Для этого используется формула R = δ / λ, где:

  • λ — справочное значение теплопроводности материала стены, Вт/(м°С);
  • δ — толщина слоя из этого материала, м.

Если стена возведена из 2 материалов (например, кирпич с утеплителем из минваты), то термическое сопротивление рассчитывается для каждого из них, а результаты суммируются. Уличная температура выбирается как по нормативным документам, так и по личным наблюдениям, внутренняя — по необходимости. Добавочные теплопотери — это коэффициенты, определенные нормами:

  1. Когда стена либо часть кровли повернута на север, северо-восток или северо-запад, то β = 0,1.
  2. Если конструкция обращена на юго-восток или запад, β = 0,05.
  3. β = 0, когда наружное ограждение выходит на южную или юго-западную сторону.

Порядок выполнения вычислений

Чтобы учесть все тепло, уходящее из дома, необходимо сделать расчет теплопотерь помещения, причем каждого по отдельности. Для этого производятся замеры всех ограждений, соседствующих с окружающей средой: стен, окон, крыши, пола и дверей.



Важный момент: обмеры следует выполнять по внешней стороне, захватывая углы строения, иначе расчет теплопотерь дома даст заниженный расход тепла.

Окна и двери измеряются по проему, который они заполняют.

По результатам замеров рассчитывается площадь каждой конструкции и подставляется в первую формулу (S, м²). Туда же вставляется значение R, полученное делением толщины ограждения на коэффициент теплопроводности строительного материала. В случае с новыми окнами из металлопластика величину R вам подскажет представитель фирмы-установщика.

В качестве примера стоит провести расчет теплопотерь через ограждающие стены из кирпича толщиной 25 см, площадью 5 м² при температуре окружающей среды -25°С. Предполагается, что внутри температура составит +20°С, а плоскость конструкции обращена к северу (β = 0,1). Сначала нужно взять из справочной литературы коэффициент теплопроводности кирпича (λ), он равен 0,44 Вт/(м°С). Затем по второй формуле вычисляется сопротивление передаче тепла кирпичной стены 0,25 м:

R = 0,25 / 0.44 = 0,57 м²°С / Вт

Чтобы определить теплопотери помещения с этой стенкой, все исходные данные надо подставить в первую формулу:

Q = 1 / 0,57 х (20 — (-25)) х 5 х (1 + 0,1) = 434 Вт = 4.3 кВт

Если в комнате имеется окно, то после вычисления его площади следует таким же образом определить теплопотери сквозь светопрозрачный проем. Такие же действия повторяются относительно полов, кровли и входной двери. В конце все результаты суммируются, после чего можно переходить к следующему помещению.

Учет тепла на подогрев воздуха

Выполняя расчет теплопотерь здания, важно учесть количество тепловой энергии, расходуемой системой отопления на подогрев вентиляционного воздуха. Доля этой энергии достигает 30% от общих потерь, поэтому игнорировать ее недопустимо. Рассчитать вентиляционные теплопотери дома можно через теплоемкость воздуха с помощью популярной формулы из курса физики:

Q возд = cm (t в — t н). В ней:

  • Q возд — тепло, расходуемое системой отопления на прогрев приточного воздуха, Вт;
  • t в и t н — то же, что в первой формуле, °С;
  • m — массовый расход воздуха, попадающего в дом снаружи, кг;
  • с — теплоемкость воздушной смеси, равна 0.28 Вт / (кг °С).

Здесь все величины известны, кроме массового расхода воздуха при вентиляции помещений. Чтобы не усложнять себе задачу, стоит согласиться с условием, что воздушная среда обновляется во всем доме 1 раз в час. Тогда объемный расход воздуха нетрудно посчитать путем сложения объемов всех помещений, а затем нужно перевести его в массовый через плотность. Поскольку плотность воздушной смеси меняется в зависимости от его температуры, нужно взять подходящее значение из таблицы:


m = 500 х 1,422 = 711 кг/ч

Подогрев такой массы воздуха на 45°С потребует такого количества теплоты:

Q возд = 0.28 х 711 х 45 = 8957 Вт, что примерно равно 9 кВт.

По окончании расчетов результаты тепловых потерь сквозь наружные ограждения суммируются с вентиляционными теплопотерями, что дает общую тепловую нагрузку на систему отопления здания.

Представленные методики вычислений можно упростить, если формулы ввести в программу Excel в виде таблиц с данными, это существенно ускорит проведение расчета.

Ниже приведен довольно простой расчет теплопотерь зданий, который, тем не менее, поможет достаточно точно определить мощность, требуемую для отопления Вашего склада, торгового центра или другого аналогичного здания. Это даст возможность еще на стадии проектирования предварительно оценить стоимость отопительного оборудования и последующие затраты на отопление, и при необходимости скорректировать проект.

Куда уходит тепло? Тепло уходит через стены, пол, кровлю и окна. Кроме того тепло теряется при вентиляции помещений. Для вычисление теплопотерь через ограждающие конструкции используют формулу:

Q – теплопотери, Вт

S – площадь конструкции, м2

T – разница температур между внутренним и наружным воздухом, °C

R – значение теплового сопротивления конструкции, м2 °C/Вт

Схема расчета такая – рассчитываем теплопотери отдельных элементов, суммируем и добавляем потери тепла при вентиляции. Все.

Предположим мы хотим рассчитать потери тепла для объекта, изображенного на рисунке. Высота здания 5…6 м, ширина – 20 м, длинна – 40м, и тридцать окон размеров 1,5 х 1,4 метра. Температура в помещении 20 °С, внешняя температура -20 °С.

Считаем площади ограждающих конструкций:

пол: 20 м * 40 м = 800 м2

кровля: 20,2 м * 40 м = 808 м2

окна: 1,5 м * 1,4 м * 30 шт = 63 м2

стены: (20 м + 40 м + 20 м + 40м) * 5 м = 600 м2 + 20 м2 (учет скатной кровли) = 620 м2 – 63 м2 (окна) = 557 м2

Теперь посмотрим тепловое сопротивление используемых материалов.

Значение теплового сопротивления можно взять из таблицы тепловых сопротивлений или вычислить исходя из значения коэффициента теплопроводности по формуле:

R – тепловое сопротивление, (м2*К)/Вт

? – коэффициент теплопроводности материала, Вт/(м2*К)

d – толщина материала, м

Значение коэффициентов теплопроводности для разных материалов можно посмотреть .

пол: бетонная стяжка 10 см и минеральная вата плотностью 150 кг/м3. толщиной 10 см.

R (бетон) = 0.1 / 1,75 = 0,057 (м2*К)/Вт

R (минвата) = 0.1 / 0,037 = 2,7 (м2*К)/Вт

R (пола) = R (бетон) + R (минвата) = 0,057 + 2,7 = 2,76 (м2*К)/Вт

кровля:

R (кровля) = 0.15 / 0,037 = 4,05 (м2*К)/Вт

окна: значение теплового сопротивления окон зависит от вида используемого стеклопакета
R (окна) = 0,40 (м2*К)/Вт для однокамерного стекловакета 4–16–4 при?T = 40 °С

стены: панели из минеральной ваты толщиной 15 см
R (стены) = 0.15 / 0,037 = 4,05 (м2*К)/Вт

Посчитаем тепловые потери:

Q (пол) = 800 м2 * 20 °С / 2,76 (м2*К)/Вт = 5797 Вт = 5,8 кВт

Q (кровля) = 808 м2 * 40 °С / 4,05 (м2*К)/Вт = 7980 Вт = 8,0 кВт

Q (окна) = 63 м2 * 40 °С / 0,40 (м2*К)/Вт = 6300 Вт = 6,3 кВт

Q (стены) = 557 м2 * 40 °С / 4,05 (м2*К)/Вт = 5500 Вт = 5,5 кВт

Получаем, что суммарные теплопотери через ограждающие конструкции составят:

Q (общая) = 5,8 + 8,0 + 6,3 + 5,5 = 25,6 кВт / ч

Теперь о потерях на вентиляцию.

Для нагрева 1 м3 воздуха с температуры – 20 °С до + 20 °С потребуется 15,5 Вт.

Q(1 м3 воздуха) = 1,4 * 1,0 * 40 / 3,6 = 15,5 Вт, здесь 1,4 – плотность воздуха (кг/м3), 1,0 – удельная теплоёмкость воздуха (кДж/(кг К)), 3,6 – коэффициент перевода в ватты.

Осталось определиться с количеством необходимого воздуха. Считается, что при нормальном дыхании человеку нужно 7 м3 воздуха в час. Если Вы используете здание как склад и на нем работают 40 человек, то вам нужно нагревать 7 м3 * 40 чел = 280 м3 воздуха в час, на это потребуется 280 м3 * 15,5 Вт = 4340 Вт = 4,3 кВт. А если у Вас будет супермаркет и в среднем на территории находится 400 человек, то нагрев воздуха потребует 43 кВт.

Итоговый результат:

Для отопления предложенного здания необходима система отопления порядка 30 кВт/ч, и система вентиляции производительностью 3000 м3 /ч с нагревателем мощность 45 кВт/ч.