Атомный радиус азота. Азот - это что за вещество? Типы и свойства азота

Всем известно: азот инертен. Часто мы сетуем за это на элемент №7, что естественно: слишком дорогой ценой приходится расплачиваться за его относительную инертность, слишком много энергии, сил и средств приходится тратить на его превращение в жизненно необходимые соединения.

Но, с другой стороны, не будь азот так инертен, в атмосфере произошли бы реакции азота с кислородом, и жизнь на пашей планете в тех формах, в которых она существует, стала бы невозможной. Растения, животные, мы с вами буквально захлебывались бы в потоках неприемлемых жизнью окислов и кислот. И «при всем при том» именно в окислы и азотную кислоту мы стремимся превратить возможно большую часть атмосферного азота. Это один из парадоксов элемента №7. (Здесь автор рискует быть обвиненным в тривиальности, ибо парадоксальность азота, вернее его свойств, стала притчей во языцех. И все же...)

Азот – элемент необыкновенный. Порою кажется, что чем больше мы о нем узнаем, тем непонятнее он становится. Противоречивость свойств элемента №7 отразилась даже в его названии, ибо ввела в заблуждение даже такого блистательного химика, как Антуан Лоран Лавуазье. Это Лавуазье предложил назвать азот азотом после того, как не первым и не последним получил и исследовал не поддерживающую дыхания и горения часть воздуха. Согласно Лавуазье, «азот» означает «безжизненный», и слово это произведено от греческого «а» – отрицание и «зоэ» – жизнь.

Термин «азот» бытовал еще в лексиконе алхимиков, откуда и заимствовал его французский ученый. Означал он некое «философское начало», своего рода кабалистическое заклинание. Знатоки утверждают, что ключом к расшифровке слова «азот» служит заключительная фраза из Апокалипсиса: «Я есть альфа и омега, начало и конец, первый и последний...» В средние века особо почитались три языка: латинский, греческий и древнееврейский. И слово «азот» алхимики составили из первой буквы «а» (а, альфа, алеф) и последних букв: «зет», «омега» и «тов» этих трех алфавитов. Таким образом, это таинственное синтетическое слово означало «начало и конец всех начал».

Современник и соотечественник Лавуазье Ж. Шапталь, не мудрствуя лукаво, предложил назвать элемент №7 гибридным латино-греческим именем «нитрогениум», что значит «селитру рождающий». Селитры – азотнокислые соли, вещества, известные с древнейших времен. (О них речь впереди.) Надо сказать, что термин «азот» укоренился только в русском и французском языках. По-английски элемент №7 – «Nitrogen», по-немецки – «Stockton» (удушающее вещество). Химический же символ N – дань шапталевскому нитрогениуму.

Кем открыт азот

Открытие азота приписывают ученику замечательного шотландского ученого Джозефа Блэка Даниелю Резерфорду, который в 1772 г. опубликовал диссертацию «О так называемом фиксируемом и мефитическом воздухе». Блэк прославился своими опытами с «фиксируемым воздухом» – углекислым газом. Он обнаружил, что после фиксирования углекислоты (связывания ее щелочью) остается еще какой-то «не фиксируемый воздух», который был назван «мефитическим» – испорченным – за то, что не поддерживал горения и дыхания. Исследование этого «воздуха» Блэк и предложил Резерфорду в качестве диссертационной работы.

Примерно в то же время азот был получен К. Шееле, Дж. Пристли, Г. Кавендишем, причем последний, как следовало из его лабораторных записей, изучал этот газ раньше Резерфорда, но, как всегда, не спешил с публикацией результатов своих трудов. Однако все эти выдающиеся ученые имели весьма смутное представление о природе открытого ими вещества. Они были убежденными сторонниками теории флогистона и связывали свойства «мефитического воздуха» с этой мнимой субстанцией. Только Лавуазье, ведя наступление на флогистон, убедился сам и убедил других, что газ, который он назвал «безжизненным», – простое вещество, как и кислород...

Вселенский катализатор?

Можно лишь догадываться, что означает «начало и конец всех начал» в алхимическом «азоте». Но об одном из «начал», связанных с элементом №7, можно говорить всерьез. Азот и жизнь – понятия неотделимые. По крайней мере, всякий раз, когда биологи, химики, астрофизики пытаются постичь «начало начал» жизни, то непременно сталкиваются с азотом.

Атомы земных химических элементов рождены в недрах звезд. Именно оттуда, от ночных светил и дневного светила, начинаются истоки нашей земной жизни. Это обстоятельство и имел в виду английский астрофизик У. Фаулер , говоря, что «все мы... являемся частичкой звездного праха»...

Звездный «прах» азота возникает в сложнейшей цепи термоядерных процессов, начальная стадия которых – превращение водорода в гелий. Это многостадийная реакция, идущая, как предполагают, двумя путями. Один из них, получивший название углеродно-азотного цикла, имеет самое непосредственное отношение к элементу №7. Этот цикл начинается, когда в звездном веществе, помимо ядер водорода – протонов, уже есть и углерод. Ядро углерода-12, присоединив еще один протон, превращается в ядро нестабильного азота-13:

12 6 C + 1 1 H → 13 7 N + γ.

Но, испустив позитрон, азот снова становится углеродом – образуется более тяжелый изотоп 13 С:

13 7 N → 13 6 C + е + + γ.

Такое ядро, приняв лишний протон, превращается в ядро самого распространенного в земной атмосфере изотопа - 14 N.

13 6 C + 1 1 H → 14 7 N + γ.

Увы, лишь часть этого азота отправляется в путешествие по Вселенной. Под действием протонов азот-14 превращается в кислород-15, а тот, в свою очередь, испустив позитрон и гамма-квант, превращается в другой земной изотоп азота – 15 N:

14 7 N + 1 1 H → 15 8 O + γ;

15 8 O → 15 7 N + е + + γ.

Земной азот-15 стабилен, но и он в недрах звезды подвержен ядерному распаду; после того, как ядро 15 N примет еще один протон, произойдет не только образование кислорода 16 О, но и другая ядерная реакция:

15 7 N + 1 1 H → 12 6 С + 4 2 He.

В этой цепи превращений азот – один из промежуточных продуктов. Известный английский астрофизик Р.Дж. Тейлер пишет: « 14 N – изотоп, который нелегко построить. В углеродно-азотном цикле образуется азот, и, хотя впоследствии он снова превращается в углерод, все же если процесс протекает стационарно, то азота в веществе оказывается больше, чем углерода. Это, по-видимому, основной источник 14 N»...

В умеренно сложном углеродно-азотном цикле прослеживаются любопытные закономерности. Углерод 12 С играет в нем роль своеобразного катализатора. Судите сами, в конечном счете не происходит изменения количества ядер 12 С. Азот же, появляясь в начале процесса, исчезает в конце... И если углерод в этом цикле – катализатор, то азот явно – аутокатализатор, т.е. продукт реакции, катализирующий ее дальнейшие промежуточные стадии.

Мы не случайно завели здесь речь о каталитических свойствах элемента №7. Но сохранил ли эту особенность звездный азот и в живом веществе? Катализаторы жизненных процессов – ферменты, и все они, равно как и большинство гормонов и витаминов, содержат азот.

Азот в атмосфере Земли

Жизнь многим обязана азоту, но и азот, по крайней мере атмосферный, своим происхождением обязан не столько Солнцу, сколько жизненным процессам. Поразительно несоответствие между содержанием элемента №7 в литосфере (0,01%) и в атмосфере (75,6% по массе или 78,09% по объему). В общем-то, мы обитаем в азотной атмосфере, умеренно обогащенной кислородом.

Между тем ни на других планетах солнечной системы, ни в составе комет или каких-либо других холодных космических объектов свободный азот не обнаружен. Есть его соединения и радикалы – CN * , NH * , NH * 2 , NH * 3 , а вот азота нет. Правда, в атмосфере Венеры зафиксировано около 2% азота, но эта цифра еще требует подтверждения. Полагают, что и в первичной атмосфере Земли элемента №7 не было. Откуда же тогда он в воздухе?

По-видимому, атмосфера нашей планеты состояла вначале из летучих веществ, образовавшихся в земных недрах: Н 2 , Н 2 О, СО 2 , СН 4, NH 3 . Свободный азот если и выходил наружу как продукт вулканической деятельности, то превращался в аммиак. Условия для этого были самые подходящие: избыток водорода, повышенные температуры – поверхность Земли еще не остыла. Так что же, значит, сначала азот присутствовал в атмосфере в виде аммиака? Видимо, так. Запомним это обстоятельство.

Но вот возникла жизнь... Владимир Иванович Вернадский утверждал, что «земная газовая оболочка, наш воздух, есть создание жизни». Именно жизнь запустила удивительнейший механизм фотосинтеза. Один из конечных продуктов этого процесса – свободный кислород стал активно соединяться с аммиаком, высвобождая молекулярный азот:

CO 2 + 2Н 2 О → фотосинтез → НСОН + Н 2 О + О 2 ;

4NH 3 + 3O 2 → 2N 2 + 6Н 2 О.

Кислород и азот, как известно, в обычных условиях между собой не реагируют, что и позволило земному воздуху сохранить «статус кво» состава. Заметим, что значительная часть аммиака могла раствориться в воде при образовании гидросферы.

В наше время основной источник поступления N 2 в атмосферу – вулканические газы.

Если разорвать тройную связь...

Разрушив неисчерпаемые запасы связанного активного азота, живая природа поставила себя перед проблемой: как связать азот. В свободном, молекулярном состоянии он, как мы знаем, оказался весьма инертным. Виной тому – тройная химическая связь его молекулы: N≡N.

Обычно связи такой кратности малоустойчивы. Вспомним классический пример ацетилена: НС = СН. Тройная связь его молекулы очень непрочна, чем и объясняется невероятная химическая активность этого газа. А вот у азота здесь явная аномалия: его тройная связь образует самую стабильную из всех известных двухатомных молекул. Нужно приложить колоссальные усилия, чтобы разрушить эту связь. К примеру, промышленный синтез аммиака требует давления более 200 атм. и температуры свыше 500°C, да еще обязательного присутствия катализаторов... Решая проблему связывания азота, природе пришлось наладить непрерывное производство соединений азота методом гроз.

Статистика утверждает, что в атмосфере нашей планеты ежегодно вспыхивают три с лишним миллиарда молний. Мощность отдельных разрядов достигает 200 млн киловатт, а воздух при этом разогревается (локально, разумеется) до 20 тыс. градусов. При такой чудовищной температуре молекулы кислорода и азота распадаются на атомы, которые, легко реагируя друг с другом, образуют непрочную окись азота:

N 2 + O 2 → 2NО.

Благодаря быстрому охлаждению (разряд молнии длится десятитысячную долю секунды) окись азота не распадается и беспрепятственно окисляется кислородом воздуха до более стабильной двуокиси:

2NO + О 2 → 2NO 2 .

В присутствии атмосферной влаги и капель дождя двуокись азота превращается в азотную кислоту:

3NO 2 + H 2 O → 2HNO 3 + NO.

Так, попав под свежий грозовой дождик, мы получаем возможность искупаться в слабом растворе азотной кислоты. Проникая в почву, атмосферная азотная кислота образует с ее веществами разнообразные естественные удобрения. Азот фиксируется в атмосфере и фотохимическим путем: поглотив квант света, молекула N 2 переходит в возбужденное, активированное состояние и становится способной соединяться с кислородом...

Бактерии и азот

Из почвы соединения азота попадают в растения. Далее: «лошади кушают овес», а хищники – травоядных животных. По пищевой цепи идет круговорот вещества, в том числе и элемента №7. При этом форма существования азота меняется, он входит в состав все более сложных и нередко весьма активных соединений. Но не только «грозорожденный» азот путешествует по пищевым цепям..

Еще в древности было замечено, что некоторые растения, в частности бобовые, способны повышать плодородие почвы.

«...Или, как сменится год, золотые засеивай злаки
Там, где с поля собрал урожай, стручками шумящий,
Или где вика росла мелкоплодная с горьким лупином...»

Вчитайтесь: это же травопольная система земледелия! Строки эти взяты из поэмы Вергилия, написанной около двух тысяч лет назад.

Пожалуй, первым, кто задумался над тем, почему бобовые дают прибавки урожая зерновых, был французский агрохимик Ж. Буссенго. В 1838 г. он установил, что бобовые обогащают почву азотом. Зерновые же (и еще многие другие растения) истощают землю, забирая, в частности, все тот же азот. Буссенго предположил, что листья бобовых усваивают азот из воздуха, но это было заблуждением. В то время немыслимо было предположить, что дело не в самих растениях, а в особых микроорганизмах, вызывающих образование клубеньков на их корнях. В симбиозе с бобовыми эти организмы и фиксируют азот атмосферы. Сейчас это прописная истина...

В наше время известно довольно много различных азотфиксаторов: бактерии, актиномицеты, дрожжевые и плесневые грибки, сине-зеленые водоросли. И все они поставляют азот растениям. Но вот вопрос: каким образом без особых энергетических затрат расщепляют инертную молекулу N 2 микроорганизмы? И почему одни из них обладают этой полезнейшей для всего живого способностью, а другие нет? Долгое время это оставалось загадкой. Тихий, без громов и молний механизм биологической фиксации элемента №7 был раскрыт лишь недавно. Доказано, что путь элементарного азота в живое вещество стал возможен благодаря восстановительным процессам, в ходе которых азот превращается в аммиак. Решающую роль при этом играет фермент нитрогеназа. Его центры, содержащие соединения железа и молибдена, активируют азот для «стыковки» с водородом, который предварительно активируется другим ферментом. Так из инертного азота получается весьма активный аммиак – первый стабильный продукт биологической азотфиксации.

Вот ведь как получается! Сначала процессы жизнедеятельности перевели аммиак первичной атмосферы в азот, а затем жизнь снова превратила азот в аммиак. Стоило ли природе на этом «ломать копья»? Безусловно, потому что именно так и возник круговорот элемента №7.

Залежи селитры и рост народонаселения

Природная фиксация азота молниями и почвенными бактериями ежегодно дает около 150 млн т. соединений этого элемента. Однако не весь связанный азот участвует в круговороте. Часть его выводится из процесса и отлагается в виде залежей селитры. Богатейшей такой кладовой оказалась чилийская пустыня Атакама в предгорьях Кордильер. Здесь годами не бывает дождей. Но изредка на склоны гор обрушиваются сильные ливни, вымывающие почвенные соединения. Потоки воды в течение тысячелетий выносили вниз растворенные соли, среди которых больше всего было селитры. Вода испарялась, соли оставались... Так возникло крупнейшее в мире месторождение азотных соединений.

Еще знаменитый немецкий химик Иоганн Рудольф Глаубер, живший в XVII в., отметил исключительную важность азотных солей для развития растений. В своих сочинениях, размышляя о круговороте азотистых веществ в природе, он употреблял такие выражения, как «нитрозные соки почвы» и «селитра – соль плодородия».

Но природную селитру в качестве удобрения стали применять лишь в начале прошлого века, когда стали разрабатывать чилийские залежи. В то время это был единственный значительный источник связанного азота, от которого, казалось, зависит благополучие человечества. Об азотной же промышленности тогда не могло быть и речи.

В 1824 г. английский священник Томас Мальтус провозгласил свою печально известную доктрину о том, что народонаселение растет гораздо быстрее, чем производство продуктов питания. В это время вывоз чилийской селитры составлял всего около 1000 т в год. В 1887 г. соотечественник Мальтуса, известный ученый Томас Гексли предсказал скорый конец цивилизации из-за «азотного голода», который должен наступить после выработки месторождений чилийской селитры (ее добыча к этому времени составляла уже более 500 тыс. т в год).

Через 11 лет еще один знаменитый ученый сэр Уильям Крукс заявил в Британском обществе содействия наукам, что не пройдет и полувека, как наступит продовольственный крах, если численность народонаселения не сократится. Он также аргументировал свой печальный прогноз тем, что «в скором времени предстоит полное истощение залежей чилийской селитры» со всеми отсюда вытекающими последствиями.

Пророчества эти не оправдались – человечество не погибло, а освоило искусственную фиксацию элемента №7. Более того, сегодня доля природной селитры – лишь 1,5% от мирового производства азотсодержащих веществ.

Как связывали азот

Соединения азота люди умели получать давно. Ту же селитру приготовляли в особых сараях – селитряницах, но очень уж примитивным был этот способ. «Выделывают селитру из куч навоза, золы, помета, оскребков кож, крови, картофельной ботвы. Кучи эти два года поливают мочою и переворачивают, после чего на них образуется налет селитры», – такое описание селитряного производства есть в одной старинной книге.

Источником соединений азота может служить и каменный уголь, в котором до 3% азота. Связанного азота! Этот азот стали выделять при коксовании углей, улавливая аммиачную фракцию и пропуская ее через серную кислоту.

Конечный продукт – сульфат аммония. Но и это, в общем-то, крохи. Трудно даже представить, какими путями развивалась бы наша цивилизация, не реши она вовремя проблему промышленно приемлемой фиксации атмосферного азота.

Впервые атмосферный азот связал еще Шееле. В 1775 г. он получил цианистый натрий, нагревая в атмосфере азота соду с углем:

Na 2 CO 3 + 4С + N 2 → 2NaCN + 3СО.

В 1780 г. Пристли установил, что объем воздуха, заключенный в сосуде, перевернутом над водой, уменьшается, если через него пропускать электрическую искру, а вода приобретает свойства слабой кислоты. Этот эксперимент был, как мы знаем (Пристли этого не знал), моделью природного механизма фиксации азота. Четыре года спустя Кавендиш, пропуская электрический разряд через воздух, заключенный в стеклянной трубке со щелочью, обнаружил там селитру.

И хотя все эти эксперименты не могли в то время выйти за пределы лабораторий, в них виден прообраз промышленных способов фиксации азота – цианамидного и дугового, появившихся на рубеже XIX...XX вв.

Цианамидный способ был запатентован в 1895 г. немецкими исследователями А. Франком и Н. Каро. По этому способу азот при нагревании с карбидом кальция связывался в цианамид кальция:

CaC 2 + N 2 → Ca(CN) 2 .

В 1901 г. сын Франка, подав идею о том, что цианамид кальция может служить хорошим удобрением, по существу, положил начало производству этого вещества. Росту индустрии связанного азота способствовало появление дешевой электроэнергии. Наиболее перспективным способом фиксации атмосферного азота в конце XIX в. считался дуговой, при помощи электрического разряда. Вскоре после строительства Ниагарской электростанции американцы неподалеку пустили (в 1902 г.) первый дуговой завод. Через три года в Норвегии вступила в строй дуговая установка, разработанная теоретиком и специалистом по изучению северного сияния X. Биркеландом и инженером-практиком С. Эйде. Заводы подобного типа получили широкое распространение; селитру, которую они выпускали, называли норвежской. Однако расход электроэнергии при этом процессе был чрезвычайно велик и составлял до 70 тыс. киловатт/час на тонну связанного азота, причем только 3% этой энергии использовалось непосредственно на фиксацию.

Через аммиак

Перечисленные выше способы фиксации азота были лишь подходами к методу, появившемуся незадолго до первой мировой войны. Это о нем американский популяризатор науки Э. Слоссон весьма остроумно заметил: «Всегда говорилось, что англичане господствуют на море, а французы – на суше, немцам же остается только воздух. К этой шутке немцы отнеслись как будто бы серьезно и принялись использовать воздушное царство для нападения на англичан и французов... Кайзер... обладал целым флотом цеппелинов и таким способом фиксации азота, который не был известен никакой другой нации. Цеппелины разрывались, как мешки с воздухом, но заводы, фиксирующие азот, продолжали работать и сделали Германию независимой от Чили не только в годы войны, но и в мирное время»... Речь идет о синтезе аммиака – основном процессе современной индустрии связанного азота.

Слоссон был не совсем прав, говоря о том, что способ фиксации азота в аммиак не был известен нигде, кроме Германии. Теоретические основы этого процесса были заложены французскими и английскими учеными. Еще в 1784 г. знаменитый К. Бертолле установил состав аммиака и высказал мысль о химическом равновесии реакций синтеза и разложения этого вещества. Через пять лет англичанином У. Остином была предпринята первая попытка синтеза NH 3 из азота и водорода. И, наконец, французский химик А. Ле Шателье, отчетливо сформулировав принцип подвижного равновесия, первым синтезировал аммиак. При этом он применил высокое давление и катализаторы – губчатую платину и железо. В 1901 г. Ле Шателье запатентовал этот способ.

Исследования по синтезу аммиака в начале века проводили также Э. Перман и Г. Аткинс в Англии. В своих экспериментах эти исследователи в качестве катализаторов применяли различные металлы, в частности медь, никель и кобальт...

Но наладить синтез аммиака из водорода и азота в промышленных масштабах впервые удалось, действительно, в Германии. В этом заслуга известного химика Фрица Габера . В 1918 г. он был удостоен Нобелевской премии по химии.

Технология производства NH 3 , разработанная немецким ученым, очень сильно отличалась от других производств того времени. Здесь впервые был применен принцип замкнутого цикла с непрерывно действующей аппаратурой и утилизацией энергии. Окончательную разработку технологии синтеза аммиака завершил коллега и друг Габера К. Бош , который в 1931 г. также был удостоен Нобелевской премии – за развитие методов химического синтеза при высоких давлениях.

По пути природы

Синтез аммиака стал еще одной моделью природной фиксации элемента №7. Напомним, что микроорганизмы связывают азот именно в NH 3 . При всех достоинствах процесса Габера – Боша он выглядит несовершенным и громоздким по сравнению с природным!

«Биологическая фиксация атмосферного азота... была неким парадоксом, постоянным вызовом для химиков, своего рода демонстрацией недостаточности наших знаний». Эти слова принадлежат советским химикам М.Е. Вольпину и А.Е. Шилову, которые предприняли попытку фиксации молекулярного азота в мягких условиях.

Сначала были неудачи. Но в 1964 г. в Институте элементоорганических соединении АН СССР, в лаборатории Вольпина, было сделано открытие: в присутствии соединений переходных металлов – титана, ванадия, хрома, молибдена и железа – элемент №7 активируется и при обычных условиях образует комплексные соединения, разлагаемые водой до аммиака. Именно эти металлы служат и центрами фиксации азота в ферментах азотфиксаторов, и прекрасными катализаторами в производстве аммиака.

Вскоре после этого канадские ученые А. Аллен и К. Зеноф, исследуя реакцию гидразина N 2 H 2 с треххлористым рутением, получили химический комплекс, в котором, опять же в мягких условиях, азот оказался связанным. Этот результат настолько противоречил обычным представлениям, что редакция журнала, куда исследователи послали свою статью с сенсационным сообщением, отказалась ее печатать. В дальнейшем советским ученым удалось в мягких условиях получить и азотсодержащие органические вещества. Пока еще рано говорить о промышленных способах мягкой химической фиксации атмосферного азота, однако, достигнутые успехи позволяют предвидеть надвигающуюся революцию в технологии связывания элемента №7.

Современной наукой не забыты и старые способы получения азотных соединений через окислы. Здесь главные усилия направлены на разработку технологических процессов, ускоряющих расщепление молекулы N 2 на атомы. Наиболее перспективными направлениями окисления азота считают сжигание воздуха в специальных печах, применение плазмотронов, использование для этих целей пучка ускоренных электронов.

Чего бояться?

Сегодня нет оснований опасаться, что человечество когда-либо будет испытывать недостаток в соединениях азота. Промышленная фиксация элемента №7 прогрессирует невероятными темпами. Если в конце 60-х годов мировое производство связанного азота составляло 30 млн т., то к началу будущего века оно, по всей вероятности, достигнет миллиарда тонн!

Такие успехи не только радуют, но и вызывают опасения. Дело в том, что искусственная фиксация N 2 и внесение в почву огромного количества азотсодержащих веществ – самое грубое и значительное вмешательство человека в естественный круговорот веществ. В наше время азотные удобрения не только вещества плодородия, но и загрязнители окружающей среды. Они вымываются из почвы в реки и озера, вызывают вредное цветение водоемов, разносятся воздушными потоками на дальние расстояния...

В подземные воды уходит до 13% азота, содержащегося в минеральных удобрениях. Азотные соединения, особенно нитраты, вредны для людей и могут быть причиной отравлений. Вот вам и кормилец-азот!

Всемирная организация здравоохранения (ВОЗ) приняла предельно допустимую концентрацию нитратов в питьевой воде: 22 мг/л для умеренных широт и 10 мг/л для тропиков. В СССР санитарные нормы регламентируют содержание нитратов в воде водоемов по «тропическим» меркам – не более 10 мг/л. Выходит, что нитраты средство «обоюдоострое»...

4 октября 1957 г. человечество еще раз вмешалось в круговорот элемента №7, запустив в космос «шарик», заполненный азотом, – первый искусственный спутник...

Менделеев об азоте

«Хотя деятельнейшую, т.е. наиболее легко и часто химически действующую часть окружающего нас воздуха, составляет кислород, но наибольшую массу его, судя как по объему, так и по весу, образует азот; а именно газообразный азот составляет более 3 / 4 , хотя и менее 4 / 5 объема воздуха. А так как азот лишь немногим легче кислорода, то весовое содержание азота в воздухе составляет около 3 / 4 всей его массы. Входя в таком значительном количестве в состав воздуха, азот, по-видимому, не играет особо видной роли в атмосфере, химическое действие которой определяется преимущественно содержанием в ней кислорода. Но правильное представление об азоте получается только тогда, когда узнаем, что в чистом кислороде животные не могут долго жить, даже умирают, и что азот воздуха, хотя лишь медленно и мало-помалу, образует разнообразные соединения, часть которых играет важнейшую роль в природе, особенно в жизни организмов».

Где применяют азот

Азот – самый дешевый из всех газов, химически инертных в обычных условиях. Его широко применяют в химической технологии для создания неокислительных сред. В лабораториях в атмосфере азота хранят легко окисляющиеся соединения. Выдающиеся произведения живописи иногда (в хранилищах или при транспортировке) помещают в герметические футляры, заполненные азотом, – чтобы предохранить краски от влаги и химически активных компонентов воздуха.

Значительной бывает роль азота в металлургии и при металлообработке. Различные металлы в расплавленном состоянии реагируют на присутствие азота по-разному. Медь, например, абсолютно инертна по отношению к азоту, поэтому изделия из меди часто сваривают в струе этого газа. Магний, напротив, при горении на воздухе дает соединения не только с кислородом, но и с азотом. Так что для работы с изделиями из магния при высоких температурах азотная среда неприменима. Насыщение азотом поверхности титана придает металлу большую прочность и износостойкость – на ней образуется очень прочный и химически инертный нитрид титана. Эта реакция идет лишь при высоких температурах.

При обыкновенной температуре азот активно реагирует только с одним металлом – литием.

Наибольшее количество азота идет на производство аммиака.

Азотный наркоз

Распространенное мнение о физиологической инертности азота не совсем правильно. Азот физиологически инертен при обычных условиях.

При повышенном давлении, например при погружении водолазов, растет концентрация растворенного азота в белковых и особенно жировых тканях организма. Это приводит к так называемому азотному наркозу. Водолаз словно пьянеет: нарушается координация движений, мутится сознание. В том, что причина этого – азот, ученые окончательно убедились после проведения экспериментов, в которых вместо обычного воздуха в скафандр водолаза подавалась гелио-кислородная смесь. При этом симптомы наркоза исчезли.

Космический аммиак

Большие планеты солнечной системы Сатурн и Юпитер состоят, как полагают астрономы, частично из твердого аммиака. Аммиак замерзает при –78°C, а на поверхности Юпитера, например, средняя температура – 138°C.

Аммиак и аммоний

В большой семье азота есть странное соединение – аммоний NH 4 . В свободном виде он нигде не встречается, а в солях играет роль щелочного металла. Название «аммоний» предложил в 1808 г. знаменитый английский химик Хэмфри Дэви. Латинское слово ammonium когда-то означало: соль из Аммонии. Аммония – область в Ливии. Там находился храм египетского бога Аммона, по имени которого и называли всю область. В Аммонии издавна получали аммонийные соли (в первую очередь нашатырь), сжигая верблюжий навоз. При распаде солей получался газ, который сейчас называют аммиаком.

С 1787 г. (в том самом году, когда был принят термин «азот») комиссия по химической номенклатуре дала этому газу имя ammoniaque (аммониак). Русскому химику Я.Д. Захарову это название показалось слишком длинным, и в 1801 г. он исключил из него две буквы. Так получился аммиак.

Веселящий газ

Из пяти окислов азота два – окись (NO) и двуокись (NO 2) – нашли широкое промышленное применение. Два других – азотистый ангидрид (N 2 O 3) и азотный ангидрид (N 2 O 5) – не часто встретишь и в лабораториях. Пятый – закись азота (N 2 O). Она обладает весьма своеобразным физиологическим действием, за которое ее часто называют веселящим газом.

Выдающийся английский химик Хэмфри Дэви с помощью этого газа устраивал специальные сеансы. Вот как описывал действие закиси азота один из современников Дэви: «Одни джентльмены прыгали по столам и стульям, у других развязались языки, третьи обнаружили чрезвычайную склонность к потасовке».

Свифт смеялся напрасно

Выдающийся писатель-сатирик Джонатан Свифт охотно издевался над бесплодием современной ему науки. В «Путешествиях Гулливера», в описании академии Лагадо, есть такое место: «В его распоряжении были две большие комнаты, загроможденные самыми удивительными диковинами; пятьдесят помощников работали под его руководством. Одни сгущали воздух в сухое плотное вещество, извлекая из него селитру...»

Сейчас селитра из воздуха – вещь абсолютно реальная. Аммиачную селитру NH 4 NO 3 действительно делают из воздуха и воды.

Бактерии связывают азот

Идею о том, что некоторые микроорганизмы могут связывать азот воздуха, первым высказал русский физик П. Коссович. Русскому биохимику С.Н. Виноградскому первому удалось выделить из почвы один вид бактерий, связывающих азот.

Растения разборчивы

Дмитрий Николаевич Прянишников установил, что растение, если ему предоставлена возможность выбора, предпочитает аммиачный азот нитратному. (Нитраты – соли азотной кислоты).

Важный окислитель

Азотная кислота HNO 3 – один из самых важных окислителей, применяемых в химической промышленности. Первым ее приготовил, действуя серной кислотой на селитру, один из крупнейших химиков XVII в. Иоганн Рудольф Глаубер.

Среди соединений, получаемых сейчас с помощью азотной кислоты, многие совершенно необходимые вещества: удобрения, красители, полимерные материалы, взрывчатые вещества.

Двойная роль

Некоторые азотсодержащие соединения, применяемые в агрохимии, выполняют двоякие функции. Например, цианамид кальция хлопкоробы применяют как дефолиант – вещество, вызывающее опадение листьев перед уборкой урожая. Но это соединение одновременно служит и удобрением.

Азот в ядохимикатах

Далеко не все вещества, в состав которых входит азот, способствуют развитию любых растений. Аминные соли феноксиуксусной и трихлорфеноксиуксусной кислот – гербициды. Первая подавляет рост сорняков на полях злаковых культур, вторая применяется для очистки земель под пашни – уничтожает мелкие деревья и кустарники.

Полимеры: от биологических до неорганических

Атомы азота входят в состав многих природных и синтетических полимеров – от белка до капрона. Кроме того, азот – важнейший элемент безуглеродных, неорганических полимеров. Молекулы неорганического каучука – полифосфонитрилхлорида – это замкнутые циклы, составленные из чередующихся атомов азота и фосфора, в окружении ионов хлора. К неорганическим полимерам относятся и нитриды некоторых металлов, в том числе и самое твердое из всех веществ – боразон.

АЗОТ
N (nitrogenium) ,
химический элемент (ат. номер 7) VA подгруппы периодической системы элементов. Атмосфера Земли содержит 78% (об.) азота. Чтобы показать, как велики эти запасы азота, отметим, что в атмосфере над каждым квадратным километром земной поверхности находится столько азота, что из него можно получить до 50 млн. т нитрата натрия или 10 млн. т аммиака (соединение азота с водородом) и все же это составляет малую долю азота, содержащегося в земной коре. Существование свободного азота свидетельствует о его инертности и трудности взаимодействия с другими элементами при обычной температуре. Связанный азот входит в состав как органической, так и неорганической материи. Растительный и животный мир содержит азот, связанный с углеродом и кислородом в белках. Помимо этого известны и могут быть получены в больших количествах азотсодержащие неорганические соединения, такие, как нитраты (NO3-), нитриты (NO2-), цианиды (CN-), нитриды (N3-) и азиды (N3-).
Историческая справка. Опыты А. Лавуазье, посвященные исследованию роли атмосферы в поддержании жизни и процессов горения, подтвердили существование относительно инертного вещества в атмосфере. Не установив элементную природу остающегося после сгорания газа, Лавуазье назвал его azote, что на древнегреческом означает "безжизненный". В 1772 Д.Резерфорд из Эдинбурга установил, что этот газ является элементом, и назвал его "вредный воздух". Латинское название азота происходит от греческих слов nitron и gen, что означает "образующий селитру".
Фиксация азота и азотный цикл. Термин "фиксация азота" означает процесс связывания атмосферного азота N2. В природе это может происходить двумя путями: либо бобовые растения, например горох, клевер и соя, накапливают на своих корнях клубеньки, в которых бактерии, фиксирующие азот, превращают его в нитраты, либо происходит окисление атмосферного азота кислородом в условиях разряда молнии. С.Аррениус установил, что таким способом фиксируется до 400 млн. т азота ежегодно. В атмосфере оксиды азота соединяются с дождевой водой, образуя азотную и азотистую кислоты. Кроме того, установлено, что с дождем и снегом на каждый гектар земли попадает ок. 6700 г азота; достигая почвы, они превращаются в нитриты и нитраты. Растения используют нитраты для образования растительных белковых веществ. Животные, питаясь этими растениями, усваивают белковые вещества растений и превращают их в животные белки. После смерти животных и растений происходит их разложение, азотные соединения превращаются в аммиак. Аммиак используется двумя путями: бактерии, не образующие нитратов, разрушают его до элементов, выделяя азот и водород, а другие бактерии образуют из него нитриты, которые другими бактериями окисляются до нитратов. Таким образом происходит круговорот азота в природе, или азотный цикл.

Строение ядра и электронных оболочек. В природе существуют два стабильных изотопа азота: с массовым числом 14 (N содержит 7 протонов и 7 нейтронов) и с массовым числом 15 (содержит 7 протонов и 8 нейтронов). Их соотношение составляет 99,635:0,365, поэтому атомная масса азота равна 14,008. Нестабильные изотопы азота 12N, 13N, 16N, 17N получены искусственно. Схематически электронное строение атома азота таково: 1s22s22px12py12pz1. Следовательно, на внешней (второй) электронной оболочке находится 5 электронов, которые могут участвовать в образовании химических связей; орбитали азота могут также принимать электроны, т.е. возможно образование соединений со степенью окисления от (-III) до (V), и они известны.
См. также АТОМА СТРОЕНИЕ .
Молекулярный азот. Из определений плотности газа установлено, что молекула азота двухатомна, т.е. молекулярная формула азота имеет вид NєN (или N2). У двух атомов азота три внешних 2p-электрона каждого атома образуют тройную связь:N:::N:, формируя электронные пары. Измеренное межатомное расстояние N-N равно 1,095 . Как и в случае с водородом (см. ВОДОРОД), существуют молекулы азота с различным спином ядра - симметричные и антисимметричные. При обычной температуре соотношение симметричной и антисимметричной форм равно 2:1. В твердом состоянии известны две модификации азота: a - кубическая и b - гексагональная с температурой перехода a (r) b -237,39° С. Модификация b плавится при -209,96° С и кипит при -195,78° C при 1 атм (см. табл. 1). Энергия диссоциации моля (28,016 г или 6,023*10 23 молекул) молекулярного азота на атомы (N2 2N) равна примерно -225 ккал. Поэтому атомарный азот может образовываться при тихом электрическом разряде и химически более активен, чем молекулярный азот.
Получение и применение. Способ получения элементного азота зависит от требуемой его чистоты. В огромных количествах азот получают для синтеза аммиака, при этом допустимы небольшие примеси благородных газов.
Азот из атмосферы. Экономически выделение азота из атмосферы обусловлено дешевизной метода сжижения очищенного воздуха (пары воды, CO2, пыль, другие примеси удалены). Последовательные циклы сжатия, охлаждения и расширения такого воздуха приводят к его сжижению. Жидкий воздух подвергают фракционной перегонке при медленном подъеме температуры. Первыми выделяются благородные газы, затем азот, и остается жидкий кислород. Очистка достигается многократностью процессов фракционирования. Таким методом производят многие миллионы тонн азота ежегодно, преимущественно для синтеза аммиака, который является исходным сырьем в технологии производства различных азотсодержащих соединений для промышленности и сельского хозяйства. Кроме того, очищенную азотную атмосферу часто используют, когда недопустимо присутствие кислорода.
Лабораторные способы. Азот в небольших количествах можно получать в лаборатории разными способами, окисляя аммиак или ион аммония, например:


Очень удобен процесс окисления иона аммония нитрит-ионом:

Известны и другие способы - разложение азидов при нагревании, разложение аммиака оксидом меди(II), взаимодействие нитритов с сульфаминовой кислотой или мочевиной:


При каталитическом разложении аммиака при высокой температуре тоже можно получить азот:

Физические свойства. Некоторые физические свойства азота приведены в табл. 1.
Таблица 1. НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА АЗОТА
Плотность, г/см3 0,808 (жидк.) Температура плавления, ° С -209,96 Температура кипения, ° С -195,8 Критическая температура, ° С -147,1 Критическое давление, атма 33,5 Критическая плотность, г/см3 а 0,311 Удельная теплоемкость, Дж/(мольЧК) 14,56 (15° С) Электроотрицательность по Полингу 3 Ковалентный радиус, 0,74 Кристаллический радиус, 1,4 (M3-) Потенциал ионизации, Вб

первый 14,54 второй 29,60


а Температура и давление, при которых плотности азота жидкого и газообразного состояния одинаковы.
б Количество энергии, необходимое для удаления первого внешнего и следующего за ним электронов, в расчете на 1 моль атомарного азота.


Химические свойства. Как уже было отмечено, преобладающим свойством азота при обычных условиях температуры и давления является его инертность, или малая химическая активность. Электронная структура азота содержит электронную пару на 2s-уровне и три наполовину заполненные 2р-орбитали, поэтому один атом азота может связывать не более четырех других атомов, т.е. его координационное число равно четырем. Небольшой размер атома также ограничивает количество атомов или групп атомов, которые могут быть связаны с ним. Поэтому многие соединения других членов подгруппы VA либо вовсе не имеют аналогов среди соединений азота, либо аналогичные соединения азота оказываются нестабильными. Так, PCl5 - стабильное соединение, а NCl5 не существует. Атом азота способен связываться с другим атомом азота, образуя несколько достаточно стабильных соединений, такие, как гидразин N2H4 и азиды металлов MN3. Такой тип связи необычен для химических элементов (за исключением углерода и кремния). При повышенных температурах азот реагирует со многими металлами, образуя частично ионные нитриды MxNy. В этих соединениях азот заряжен отрицательно. В табл. 2 приведены степени окисления и примеры соответствующих соединений.
Таблица 2. СТЕПЕНИ ОКИСЛЕНИЯ АЗОТА И СООТВЕТСТВУЮЩИЕ СОЕДИНЕНИЯ
Степень окисления Примеры соединений
-III Аммиак NH3, ион аммония NH4+, нитриды M3N2 -II Гидразин N2H4 -I Гидроксиламин NH2OH I Гипонитрит натрия Na2N2O2, оксид азота(I) N2O II Оксид азота(II) NO III Оксид азота(III) N2O3, нитрит натрия NaNO2 IV Оксид азота(IV) NO2, димер N2O4 V Оксид азота(V) N2O5, азотная кислота HNO3 и ее соли (нитраты) Нитриды. Соединения азота с более электроположительными элементами, металлами и неметаллами - нитриды, - похожи на карбиды и гидриды. Их можно разделить в зависимости от характера связи M-N на ионные, ковалентные и с промежуточным типом связи. Как правило, это кристаллические вещества.
Ионные нитриды. Связь в этих соединениях предполагает переход электронов от металла к азоту с образованием иона N3-. К таким нитридам относятся Li3N, Mg3N2, Zn3N2 и Cu3N2. Кроме лития, другие щелочные металлы IA подгруппы нитридов не образуют. Ионные нитриды имеют высокие температуры плавления, реагируют с водой, образуя NH3 и гидроксиды металлов.
Ковалентные нитриды. Когда электроны азота участвуют в образовании связи совместно с электронами другого элемента без перехода их от азота к другому атому, образуются нитриды с ковалентной связью. Нитриды водорода (например, аммиак и гидразин) полностью ковалентны, как и галогениды азота (NF3 и NCl3). К ковалентным нитридам относятся, например, Si3N4, P3N5 и BN - высокостабильные белые вещества, причем BN имеет две аллотропные модификации: гексагональную и алмазоподобную. Последняя образуется при высоких давлениях и температурах и имеет твердость, близкую к твердости алмаза.
Нитриды с промежуточным типом связи. Переходные элементы в реакции с NH3 при высокой температуре образуют необычный класс соединений, в которых атомы азота распределены между регулярно расположенными атомами металла. В этих соединениях нет четкого смещения электронов. Примеры таких нитридов - Fe4N, W2N, Mo2N, Mn3N2. Эти соединения, как правило, совершенно инертны и обладают хорошей электрической проводимостью.
Водородные соединения азота. Азот и водород взаимодействуют, образуя соединения, отдаленно напоминающие углеводороды (см. также ОРГАНИЧЕСКАЯ ХИМИЯ). Стабильность азотоводородов уменьшается с увеличением числа атомов азота в цепи в отличие от углеводородов, которые устойчивы и в длинных цепях. Наиболее важные нитриды водорода - аммиак NH3 и гидразин N2H4. К ним относится также азотистоводородная кислота HNNN (HN3).
Аммиак NH3. Аммиак - один из наиболее важных промышленных продуктов современной экономики. В конце 20 в. США производили ок. 13 млн. т аммиака ежегодно (в пересчете на безводный аммиак).
Строение молекулы. Молекула NH3 имеет почти пирамидальное строение. Угол связи H-N-H составляет 107°, что близко к величине тетраэдрического угла 109°. Неподеленная электронная пара эквивалентна присоединенной группе, в результате координационное число азота равно 4 и азот располагается в центре тетраэдра.


Cвойства аммиака. Некоторые физические свойств аммиака в сравнении с водой приведены в табл. 3.

Таблица 3. НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА АММИАКА И ВОДЫ


Температуры кипения и плавления у аммиака намного ниже, чем у воды, несмотря на близость молекулярных масс и сходство строения молекул. Это объясняется относительно большей прочностью межмолекулярных связей у воды, чем у аммиака (такая межмолекулярная связь называется водородной).
Аммиак как растворитель. Высокая диэлектрическая проницаемость и дипольный момент жидкого аммиака позволяют использовать его как растворитель для полярных или ионных неорганических веществ. Аммиак-растворитель занимает промежуточное положение между водой и органическими растворителями типа этилового спирта. Щелочные и щелочноземельные металлы растворяются в аммиаке, образуя темносиние растворы. Можно полагать, что в растворе происходит сольватация и ионизация валентных электронов по схеме

Синий цвет связывают с сольватацией и движением электронов или с подвижностью "дырок" в жидкости. При высокой концентрации натрия в жидком аммиаке раствор принимает бронзовую окраску и отличается высокой электропроводностью. Несвязанный щелочной металл можно выделить из такого раствора испарением аммиака или добавлением хлорида натрия. Растворы металлов в аммиаке являются хорошими восстановителями. В жидком аммиаке происходит автоионизация


аналогично процессу, протекающему в воде


Некоторые химические свойства обеих систем сопоставлены в табл. 4. Жидкий аммиак как растворитель имеет преимущество в некоторых случаях, когда невозможно проводить реакции в воде из-за быстрого взаимодействия компонентов с водой (например, окисление и восстановление). Например, в жидком аммиаке кальций реагирует с KCl с образованием CaCl2 и K, поскольку CaCl2 нерастворим в жидком аммиаке, а К растворим, и реакция протекает полностью. В воде такая реакция невозможна из-за быстрого взаимодействия Ca с водой. Получение аммиака. Газообразный NH3 выделяется из солей аммония при действии сильного основания, например, NaOH:

Метод применим в лабораторных условиях. Небольшие производства аммиака основаны также на гидролизе нитридов, например Mg3N2, водой. Цианамид кальция CaCN2 при взаимодействии с водой также образует аммиак. Основным промышленным методом получения аммиака является каталитический синтез его из атмосферного азота и водорода при высоких температуре и давлении:


Водород для этого синтеза получают термическим крекингом углеводородов, действием паров воды на уголь или железо, разложением спиртов парами воды или электролизом воды. На синтез аммиака получено множество патентов, отличающихся условиями проведения процесса (температура, давление, катализатор). Существует способ промышленного получения при термической перегонке угля. С технологической разработкой синтеза аммиака связаны имена Ф.Габера и К.Боша.
Химические свойства аммиака. Кроме реакций, упомянутых в табл. 4, аммиак реагирует с водой, образуя соединение NH3ЧH2O, которое часто ошибочно считают гидроксидом аммония NH4OH; в действительности существование NH4OH в растворе не доказано. Водный раствор аммиака ("нашатырный спирт") состоит преимущественно из NH3, H2O и малых концентраций ионов NH4+ и OH-, образующихся при диссоциации

Основной характер аммиака объясняется наличием неподеленной электронной пары азота:NH3. Поэтому NH3 - это основание Льюиса, которое имеет высшую нуклеофильную активность, проявляемую в форме ассоциации с протоном, или ядром атома водорода:

Любые ион или молекула, способные принимать электронную пару (электрофильное соединение), будут взаимодействовать с NH3 с образованием координационного соединения. Например:


Символ Mn+ представляет ион переходного металла (B-подгруппы периодической таблицы, например, Cu2+, Mn2+ и др.). Любая протонная (т.е. Н-содержащая) кислота реагирует с аммиаком в водном растворе с образованием солей аммония, таких, как нитрат аммония NH4NO3, хлорид аммония NH4Cl, сульфат аммония (NH4)2SO4, фосфат аммония (NH4)3PO4. Эти соли широко применяются в сельском хозяйстве как удобрения для введения азота в почву. Нитрат аммония кроме того применяют как недорогое взрывчатое вещество; впервые оно было применено с нефтяным топливом (дизельным маслом). Водный раствор аммиака применяют непосредственно для введения в почву или с орошающей водой. Мочевина NH2CONH2, получаемая синтезом из аммиака и углекислого газа, также является удобрением. Газообразный аммиак реагирует с металлами типа Na и K с образованием амидов:

Аммиак реагирует с гидридами и нитридами также с образованием амидов:


Амиды щелочных металлов (например, NaNH2) реагируют с N2O при нагревании, образуя азиды:

Газообразный NH3 восстанавливает оксиды тяжелых металлов до металлов при высокой температуре, по-видимому, благодаря водороду, образующемуся в результате разложения аммиака на N2 и H2:

Атомы водорода в молекуле NH3 могут замещаться на галоген. Иод реагирует с концентрированным раствором NH3, образуя смесь веществ, содержащую NI3. Это вещество очень неустойчиво и взрывается при малейшем механическом воздействии. При реакции NH3 c Cl2 образуются хлорамины NCl3, NHCl2 и NH2Cl. При воздействии на аммиак гипохлорита натрия NaOCl (образуется из NaOH и Cl2) конечным продуктом является гидразин:


Гидразин. Приведенные выше реакции представляют собой способ получения моногидрата гидразина состава N2H4ЧH2O. Безводный гидразин образуется при специальной перегонке моногидрата с BaO или другими водоотнимающими веществами. По свойствам гидразин слегка напоминает пероксид водорода H2O2. Чистый безводный гидразин - бесцветная гигроскопичная жидкость, кипящая при 113,5° C; хорошо растворяется в воде, образуя слабое основание

В кислой среде (H+) гидразин образует растворимые соли гидразония типа []+X-. Легкость, с которой гидразин и некоторые его производные (например, метилгидразин) реагируют с кислородом, позволяет использовать его в качестве компонента жидкого ракетного топлива. Гидразин и все его производные сильно ядовиты. Оксиды азота. В соединениях с кислородом азот проявляет все степени окисления, образуя оксиды: N2O, NO, N2O3, NO2 (N2O4), N2O5. Имеется скудная информация об образовании пероксидов азота (NO3, NO4). Оксид азота(I) N2O (монооксид диазота) получается при термической диссоциации нитрата аммония:

Молекула имеет линейное строение

N2O довольно инертен при комнатной температуре, но при высоких температурах может поддерживать горение легко окисляющихся материалов. N2O, известный как "веселящий газ", используют для умеренной анестезии в медицине. Оксид азота(II) NO - бесцветный газ, является одним из продуктов каталитической термической диссоциации аммиака в присутствии кислорода:


NO образуется также при термическом разложении азотной кислоты или при реакции меди с разбавленной азотной кислотой:

NO можно получать синтезом из простых веществ (N2 и O2) при очень высоких температурах, например, в электрическом разряде. В структуре молекулы NO имеется один неспаренный электрон. Соединения с такой структурой взаимодействуют с электрическим и магнитным полями. В жидком или твердом состоянии оксид имеет голубую окраску, поскольку неспаренный электрон вызывает частичную ассоциацию в жидком состоянии и слабую димеризацию в твердом состоянии: 2NO N2O2. Оксид азота(III) N2O3 (триоксид азота) - ангидрид азотистой кислоты: N2O3 + H2O 2HNO2. Чистый N2O3 может быть получен в виде голубой жидкости при низких температурах (-20° С) из эквимолекулярной смеси NO и NO2. N2O3 устойчив только в твердом состоянии при низких температурах (т.пл. -102,3° С), в жидком и газообразном состояния он снова разлагается на NO и NO2. Оксид азота(IV) NO2 (диоксид азота) также имеет в молекуле неспаренный электрон (см. выше оксид азота(II)). В строении молекулы предполагается трехэлектронная связь, и молекула проявляет свойства свободного радикала (одна линия соответствует двум спаренным электронам):


NO2 получается каталитическим окислением аммиака в избытке кислорода или окислением NO на воздухе:


а также по реакциям:


При комнатной температуре NO2 - газ темнокоричневого цвета, обладает магнитными свойствами благодаря наличию неспаренного электрона. При температурах ниже 0° C молекула NO2 димеризуется в тетраоксид диазота, причем при -9,3° C димеризация протекает полностью: 2NO2 N2O4. В жидком состоянии недимеризовано только 1% NO2, а при 100° C остается в виде димера 10% N2O4. NO2 (или N2O4) реагирует в теплой воде с образованием азотной кислоты: 3NO2 + H2O = 2HNO3 + NO. Технология NO2 поэтому очень существенна как промежуточная стадия получения промышленно важного продукта - азотной кислоты. Оксид азота(V) N2O5 (устар. ангидрид азотной кислоты) - белое кристаллическое вещество, получается обезвоживанием азотной кислоты в присутствии оксида фосфора P4O10:


N2O5 легко растворяется во влаге воздуха, вновь образуя HNO3. Свойства N2O5 определяются равновесием


N2O5 - хороший окислитель, легко реагирует, иногда бурно, с металлами и органическими соединениями и в чистом состоянии при нагреве взрывается. Вероятную структуру N2O5 можно представить как


Оксокислоты азота. Для азота известны три оксокислоты: гипоазотистая H2N2O2, азотистая HNO2 и азотная HNO3. Гипоазотистая кислота H2N2O2 - очень нестабильное соединение, образуется в неводной среде из соли тяжелого металла - гипонитрита при действии другой кислоты: M2N2O2 + 2HX 2MX + H2N2O2. При выпаривании раствора образуется белое взрывчатое вещество с предполагаемой структурой H-O-N=N-O-H.
Азотистая кислота HNO2 не существует в чистом виде, однако водные растворы ее невысокой концентрации образуются при добавлении серной кислоты к нитриту бария:

Азотистая кислота образуется также при растворении эквимолярной смеси NO и NO2 (или N2O3) в воде. Азотистая кислота немного сильнее уксусной кислоты. Степень окисления азота в ней +3 (ее структура H-O-N=O), т.е. она может являться и окислителем, и восстановителем. Под действием восстановителей она восстанавливается обычно до NO, а при взаимодействии с окислителями окисляется до азотной кислоты. Скорость растворения некоторых веществ, например металлов или иодид-иона, в азотной кислоте зависит от концентрации азотистой кислоты, присутствующей в виде примеси. Соли азотистой кислоты - нитриты - хорошо растворяются в воде, кроме нитрита серебра. NaNO2 применяется в производстве красителей. Азотная кислота HNO3 - один из наиболее важных неорганических продуктов основной химической промышленности. Она используется в технологиях множества других неорганических и органических веществ, например, взрывчатых веществ, удобрений, полимеров и волокон, красителей, фармацевтических препаратов и др.
См. также ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ .
ЛИТЕРАТУРА
Справочник азотчика. М., 1969 Некрасов Б.В. Основы общей химии. М., 1973 Проблемы фиксации азота. Неорганическая и физическая химия. М., 1982

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "АЗОТ" в других словарях:

    - (N) химический элемент, газ, без цвета, вкуса и запаха; составляет 4/5 (79 %) воздуха; уд. вес 0,972; атомный вес 14; сгущается в жидкость при 140 °С. и давлении 200 атмосфер; составная часть многих растительных и животных веществ. Словарь… … Словарь иностранных слов русского языка

    АЗОТ - АЗОТ, хим. элемент, симв. N (франц. AZ), порядковый номер 7, ат. в. 14,008; точка кипения 195,7°; 1 л А. при 0° и 760 мм давл. весит 1,2508 г [лат. Nitrogenium («порождающий селитру»), нем. Stickstoff («удушающее… … Большая медицинская энциклопедия

    - (лат. Nitrogenium) N, химический элемент V группы периодической системы, атомный номер 7, атомная масса 14,0067. Название от греческой a отрицательная приставка и zoe жизнь (не поддерживает дыхания и горения). Свободный азот состоит из 2 атомных… … Большой Энциклопедический словарь

    азот - а м. azote m. <араб. 1787. Лексис.1. алхим. Первая материя металлов металлическая ртуть. Сл. 18. Пустился он <парацельс> на конец по свету, предлагая всем за весьма умеренную цену свой Лауданум и свой Азот, для изцеления всех возможных… … Исторический словарь галлицизмов русского языка

    - (Nitrogenium), N, химический элемент V группы периодической системы, атомный номер 7, атомная масса 14,0067; газ, tкип 195,80 шС. Азот основной компонент воздуха (78,09% по объему), входит в состав всех живых организмов (в организме человека… … Современная энциклопедия

    Азот - (Nitrogenium), N, химический элемент V группы периодической системы, атомный номер 7, атомная масса 14,0067; газ, tкип 195,80 °С. Азот основной компонент воздуха (78,09% по объему), входит в состав всех живых организмов (в организме человека… … Иллюстрированный энциклопедический словарь

    - (хим. знак N, атомный вес 14) один из химических элементов;бесцветный газ, не имеющий ни запаха, ни вкуса; очень мало растворим вводе. Удельный вес его 0.972. Пикте в Женеве и Кальете в Париже удалосьсгустить азот, подвергая его высокому давлениюЭнциклопедия Брокгауза и Ефрона

АЗОТ, N (лат. Nitrogenium * а. nitrogen; н. Stickstoff; ф. azote, nitrogene; и. nitrogeno), — химический элемент V группы периодической системы Менделеева, атомный номер 7, атомная масса 14,0067. Открыт в 1772 английским исследователем Д. Резерфордом.

Свойства азота

При обычных условиях азот — газ без цвета и запаха. Природный азот состоит из двух стабильных изотопов: 14 N (99,635%) и 15 N (0,365%). Молекула азота двухатомная; атомы связаны ковалентной тройной связью NN. Диаметр молекулы азота, определённый разными способами, 3,15-3,53 А. Молекула азота очень устойчива — энергия диссоциации 942,9 кДж/моль.

Молекулярный азот

Константы молекулярного азота: f плавления — 209,86°С, f кипения — 195,8°С; плотность газообразного азота 1,25 кг/ м 3 , жидкого — 808 кг/м 3 .

Характеристика азота

В твёрдом состоянии азот существует в двух модификациях: кубической а-форме с плотностью 1026,5 кг/м 3 и гексагональной b-форме с плотностью 879,2 кг/м 3 . Теплота плавления 25,5 кДж/кг, теплота испарения 200 кДж/кг. Поверхностное натяжение жидкого азота в контакте с воздухом 8,5.10 -3 Н/м; диэлектрическая проницаемость 1,000538. Растворимость азота в воде (см 3 на 100 мл Н 2 О): 2,33 (0°С), 1,42 (25°С) и 1,32 (60°С). Внешняя электронная оболочка атома азота состоит из 5 электронов. Степени окисления азота меняются от 5 (в N 2 О 5) до -3 (в NH 3).

Соединение азота

Азот при нормальных условиях может реагировать с соединениями переходных металлов (Ti, V, Mo и др.), образуя комплексы либо восстанавливаясь с образованием аммиака и гидразина. С такими активными металлами, как , азот взаимодействует при нагревании до сравнительно невысоких температур. С большинством других элементов азот реагирует при высокой температуре и в присутствии катализаторов. Хорошо изучены соединения азота с : N 2 О, NO, N 2 О 5 . С азот соединяется только при высокой температуре и в присутствии катализаторов; при этом образуется аммиак NH 3 . С галогенами азот непосредственно не взаимодействует; поэтому все галогениды азота получают только косвенным путём, например фтористый азот NF 3 — при взаимодействии с аммиаком. С серой также не происходит непосредственного соединения азота. При взаимодействии раскалённого с азотом образуется циан (CN) 2 . При действии на обычный азот электрических разрядов, а также при электрических разрядах в воздухе может образоваться активный азот, представляющий собой смесь молекул и атомов азота, обладающих повышенным запасом энергии. Активный азот весьма энергично взаимодействует с кислородом, водородом, парами , и некоторыми металлами.

Азот — один из самых распространённых элементов на Земле, причём основная его масса (около 4.10 15 т) сосредоточена в свободном состоянии в . Ежегодно при вулканической деятельности в атмосферу выделяется 2.10 6 т азота. Незначительная часть азота концентрируется в (среднее содержание в литосфере 1,9.10 -3 %). Природные соединения азота — хлористый аммоний и различные нитраты (селитры). Нитриды азота могут образовываться только при высоких температурах и давлениях, что, по-видимому, имело место на самых ранних стадиях развития Земли. Крупные скопления селитры встречаются только в условиях сухого пустынного климата ( , и др.). Небольшие количества связанного азота находятся в (1-2,5%) и (0,02-1,5%), а также в водах рек, морей и океанов. Азот накапливается в почвах (0,1 %) и живых организмах (0,3%). Азот входит в состав белковых молекул и многих естественных органических соединений.

Круговорот азота в природе

В природе осуществляется круговорот азота, который включает цикл молекулярного атмосферного азота в биосфере, цикл в атмосфере химически связанного азота, круговорот захоронённого с органическим веществом поверхностного азота в литосфере с возвратом его обратно в атмосферу. Азот для промышленности ранее добывался целиком из месторождений природных селитр, число которых в мире весьма ограничено. Особенно крупные залежи азота в виде азотнокислого натрия находятся в Чили; добыча селитры в отдельные годы составляла более 3 млн. т.

Азот (N 2) был открыт Дж. Пристли в 1774 г. Название "азот" в переводе с греческого означает "безжизненный". Оно обусловлено тем, что азот не поддерживает процессы горения и дыхания. Но для всех основных процессов жизнедеятельности растительных и живых оргнизмов азот крайне важен.


Характеристика элемента

7 N 1s 2 2s 2 2p 3



Изотопы: 14 N (99,635%); 15 N (0,365%)


Кларк в земной коре 0,01 % по массе. В атмосфере 78,09 % по объему (75,6 % по массе). Азот входит в состав живой материи (белки, нуклеиновые кислоты и др. ОВ). В гидросфере азот присутствует в виде нитратов (NО 3). Атомы азота занимают 5-е место по распространенности во Вселенной.

Важнейшие N-содержащие неорганические вещества.

Свободный (молекулярный) азот


Атомы азота связаны между собой тремя ковалентными неполярными связями: одна из них - сигма-связь, 2 - пи-связи. Энергия разрыва связи очень велика

Физические свойства

При обычной температуре и атмосферном давлении N 2 - бесцветный газ, без запаха и вкуса, немного легче воздуха, очень плохо растворяется в воде. В жидкое состояние переводится с большим трудом (Ткип -196"С). Жидкий азот имеет большую теплоту испарения и применяется для создания низких температур (хладагент).

Способы получения

Азот присутствует в воздухе в свободном состоянии, поэтому промышленный способ получения заключается в разделении воздушной смеси (ректификация жидкого воздуха).


В лабораторных условиях небольшие количества азота можно получить следующими способами:


1. Пропускание воздуха над раскаленной медью, которая поглощает кислород за счет реакции: 2Cu + О 2 = 2СиО. Остается азот с примесями инертных газов.


2. Окислительно-восстановительное разложение некоторых солей аммония:


NH 4 NО 2 = N 2 + 2Н 2 О


(NH 4) 2 Cr 2 О 7 = N 2 + Cr 2 О 3 + 4Н 2 О


3. Окисление аммиака и солей аммония:


4NH 3 + 3О 2 = 2N 2 + 6Н 2 О


8NH 3 + ЗВr 2 = N 2 + 6NH 4 Br


NH 4 Cl + NaNO 2 = N 2 + NaCl + 2Н 2 О

Химические свойства

Молекулярный азот - химически инертное вещество вследствие исключительно высокой устойчивости молекул N 2 . Только реакции соединения с металлами протекают более или менее легко. Во всех остальных случаях для инициирования и ускорения реакций необходимо применять высокие температуры, искровые электрические разряды, ионизирующее излучение, катализаторы (Fe, Cr, V, Ti и их соединения).

Реакции с восстановителями (N 2 - окислитель)

1. Взаимодействие с металлами:


Реакции образования нитридов щелочных и щелочноземельных Me протекают как с чистым азотом, так и при горении металлов на воздухе


N 2 + 6Li = 2Li 3 N


N 2 + 6Cs = 2Cs 3 N


N 2 + 3Mg = Mg 3 N 2


2. Взаимодействие с водородом (реакция имеет большое практическое значение):


N 2 + ЗН 2 = 2NH 3 аммиак


3. Взаимодействие с кремнием и углеродом


2N 2 + 3Si = Si 3 N 4 нитрид кремния (IV)


N 2 + 2C = (CN) 2 дициан


2N 2 + 5C + 2Na 2 CО 3 = 4NaCN + 3CО 2 цианид натрия

Реакции с окислителями (N 2 - восстановитель)

Эти реакции в обычных условиях не протекают. С фтором и другими галогенами азот непосредственно не взаимодействует, а с кислородом реакция происходит при температуре электрических искровых разрядов:


N 2 + О 2 = 2NO


Реакция сильно обратимая; прямая протекает с поглощением тепла (эндотермичная).

Азот экспериментальным путем был обнаружен шотландским химиком Д. Резерфордом в 1772 году. В природе азот находится в основном в свободном состоянии и является одной из главных составляющих воздуха. Каковы же физические и химические свойства азота?

Общая характеристика

Азот – химический элемент V группы периодической системы Менделеева, атомный номер 7, атомная масса 14, формула азота – N 2 . Перевод названия элемента – «безжизненный» – может относится к азоту как к простому веществу. Однако азот в связанном состоянии является одним из главных элементов жизни, входит в состав белков, нуклеиновых кислот, витаминов и т.д.

Рис. 1. Электронная конфигурация азота.

Азот – элемент второго периода, не имеет возбужденных состояний, так как атом не имеет свободных орбиталей. Но этот химический элемент может проявлять в основном состоянии валентность не только III, но и IV за счет образования ковалентной связи по донорно-акцепторному механизму с участием неподеленной электронной пары азота. Степень окисления, которую может проявлять азот, изменяется в широких пределах от -3 до +5.

при изучении строения молекулы азота необходимо помнить, что химическая связь осуществляется за счет трех общих пар p-электронов, орбитали которых направлены по осям x, y, z.

Химические свойства азота

В природе азот встречается в виде простого вещества – газа N 2 (объемная доля в воздухе 78%) и в связанном состоянии. В молекуле азота атомы связаны прочной тройной связью. Энергия этой связи составляет 940 кДж/моль. При обычной температуре азот может взаимодействовать только с литием (Li 3 N). После предварительной активизации молекул путем нагревания, облучения или действием катализаторов азот вступает в реакции с металлами и неметаллами. Азот может вступать в реакции с магнием, кальцием или, например, алюминием:

3Mg+N 2 =Mg 3 N 2

3Ca+N 2 =Ca 3 N 2

Особенно важен синтез аммиака из простых веществ – азота и водорода в присутствии катализатора (губчатое железо):N 2 +3H 2 =2NH 3 +Q. Аммиак – бесцветный газ с резким запахом. Он хорошо растворим в воде, что в значительной степени обусловлено образованием водородных связей между молекулами аммиака и воды, а также реакцией присоединения к воде по донорно-акцепторному механизму. Слабощелочная реакция раствора обусловлена наличием в растворе ионов OH- (в небольшой концентрации, так как степень диссоциации гидроксида аммония очень мала – это слабое растворимое основание).

Рис. 2. Аммиак.

Из шести оксидов азота – N 2 O, NO, N 2 O 3 , NO 2 , N 2 O 4 , N 2 O 5 , где азот проявляет степень окисления от +1 до +5, два первых – N 2 O и NO – несолеобразующие, остальные вступают в реакцию с образованием солей.

Азотную кислоту, самое важное соединение азота, в промышленности получают из аммиака в 3 стадии :

  • окисление аммиака на платиновом катализаторе:

4NH 3 +5O 2 =4NO+6H 2 O

  • окисление NO до NO 2 кислородом воздуха:
  • поглощение NO 2 водой в избытке кислорода:

4NO 2 +2H 2 O+O 2 =4HNO 3

Азот также может реагировать при высоких температурах и давлении (в присутствии катализатора) с водородом:

N 2 +3H 2 =2NH 3

Рис. 3. Азотная кислота.

Применение азота

Основное применение азот находит в качестве исходного продукта для синтеза аммиака, а также для производства азотной кислоты, минеральных удобрений, красителей, взрывчатых веществ и других азотосодержащих соединений. Жидкий азот используют в охладительных системах. Для придания стали большей твердости, увеличения износостойкости, коррозионной стойкости и теплостойкости ее поверхность насыщают азотом при высоких температурах. Такая сталь выдерживает нагревание до 500 градусов без потери своей твердости.