Электронные слои углерода. Реферат: Углерод и его основные неорганические соединения

Углерод

УГЛЕРО́Д -а; м. Химический элемент (C), важнейшая составная часть всех органических веществ в природе. Атомы углерода. Процент содержания углерода. Без углерода невозможна жизнь.

Углеро́дный, -ая, -ое. У-ые атомы. Углеро́дистый, -ая, -ое. Содержащий углерод. У-ая сталь.

углеро́д

(лат. Carboneum), химический элемент IV группы периодической системы. Основные кристаллические модификации - алмаз и графит. При обычных условиях углерод химически инертен; при высоких температурах соединяется со многими элементами (сильный восстановитель). Содержание углерода в земной коре 6,5·10 16 т. Значительное количество углерода (около 10 13 т) входит в состав горючих ископаемых (уголь, природный газ, нефть и др.), а также в состав углекислого газа атмосферы (6·10 11 т) и гидросферы (10 14 т). Главные углеродсодержащие минералы - карбонаты. Углерод обладает уникальной способностью образовывать огромное количество соединений, которые могут состоять практически из неограниченного числа атомов углерода. Многообразие соединений углерода определило возникновение одного из основных разделов химии - органической химии. Углерод - биогенный элемент; его соединения играют особую роль в жизнедеятельности растительных и животных организмов (среднее содержание углерода - 18%). Углерод широко распространён в космосе; на Солнце он занимает 4-е место после водорода, гелия и кислорода.

УГЛЕРОД

УГЛЕРО́Д (лат. Carboneum, от cаrbo - уголь), С (читается «це»), химический элемент с атомным номером 6, атомная масса 12,011. Природный углерод состоит из двух стабильных нуклидов: 12 С, 98,892% по массе и 13 C - 1,108%. В природной смеси нуклидов в ничтожных количествах всегда присутствует радиоактивный нуклид 14 C (b - -излучатель, период полураспада 5730 лет). Он постоянно образуется в нижних слоях атмосферы при действии нейтронов космического излучения на изотоп азота 14 N:
14 7 N + 1 0 n = 14 6 C + 1 1 H.
Углерод расположен в группе IVA, во втором периоде периодической системы. Конфигурация внешнего электронного слоя атома в основном состоянии 2s 2 p 2 . Важнейшие степени окисления +2 +4, –4, валентности IV и II.
Радиус нейтрального атома углерода 0,077 нм. Радиус иона C 4+ 0,029 нм (координационное число 4), 0,030 нм (координационное число 6). Энергии последовательной ионизации нейтрального атома равны 11,260, 24,382, 47,883, 64,492 и 392,09 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 2,5.
Историческая справка
Углерод известен с глубокой древности. Древесный уголь использовали для восстановления металлов из руд, алмаз (см. АЛМАЗ (минерал)) - как драгоценный камень. В 1789 французский химик А. Л. Лавуазье (см. ЛАВУАЗЬЕ Антуан Лоран) сделал вывод об элементарной природе углерода.
Искусственные алмазы впервые были получены в 1953 шведскими исследователями, но результаты они не успели опубликовать. В декабре 1954 искусственные алмазы получили, а в начале 1955 опубликовали результаты сотрудники компании «Дженерал электрик». (см. ДЖЕНЕРАЛ ЭЛЕКТРИК)
В СССР искусственные алмазы впервые были получены в 1960 группой ученых под руководством В. Н. Бакуля и Л. Ф. Верещагина (см. ВЕРЕЩАГИН Леонид Федорович) .
В 1961 группой советских химиков под руководством В. В. Коршака была синтезирована линейная модификация углерода - карбин. Вскоре карбин был обнаружен в метеоритном кратере Рис (Германия). В 1969 в СССР были синтезированы нитевидные кристаллы алмаза при обычном давлении, обладающие высокой прочностью и практически лишенные дефектов.
В 1985 Г. Крото (см. КРОТО Гаролд) обнаружил новую форму углерода -фуллерены (см. ФУЛЛЕРЕНЫ) С 60 и С 70 в масс-спектре испаряемого при облучении лазером графита. При высоких давлениях получен лонсдейлит.
Нахождение в природе
Содержание в земной коре 0,48% по массе. Накапливается в биосфере: в живом веществе 18% угля, в древесине 50%, торфе 62%, природных горючих газах 75%, горючих сланцах 78%, каменном и буром угле 80%, нефти 85%, антраците 96%. Значительная часть угля литосферы сосредоточена в известняках и доломитах. Углерод в степени окисления +4 входит в состав карбонатных пород и минералов (мел, известняк, мрамор, доломиты). Углекислый газ CO 2 (0,046% по массе) постоянный компонент атмосферного воздуха. Углекислый газ в растворенном виде всегда присутствует в воде рек, озер и морей.
В атмосфере звезд, планет и в метеоритах обнаружены вещества, содержащие углерод.
Получение
С древности уголь получали при неполном сгорании древесины. В 19 веке древесный уголь в металлургии заменили каменным углем (коксом).
В настоящее время для промышленного получения чистого углерода используют крекинг (см. КРЕКИНГ) природного газа метана (см. МЕТАН) СН 4:
СН 4 = С + 2Н 2
Уголь для медицинских целей готовят сжиганием кожуры кокосовых орехов. Для лабораторных нужд чистый уголь, не содержащий несгораемых примесей, получают неполным сжиганием сахара.
Физические и химические свойства
Углерод - неметалл.
Многообразие соединений углерода объясняется способностью его атомов связываться между собой, образуя объемные структуры, слои, цепи, циклы. Известны четыре аллотропические модификации углерода: алмаз, графит, карбин и фуллерит. Древесный уголь состоит из мельчайших кристалликов с неупорядоченной структурой графита. Его плотность 1,8-2,1 г/см 3 . Сажа представляет собой сильно измельченный графит.
Алмаз - минерал с кубической гранецентрированной решеткой. Атомы С в алмазе находятся в sp 3 -гибридизованном состоянии. Каждый атом образует 4 ковалентные s-связи с четырьмя соседними атомами С, расположенными по вершинам тетраэдра, в центре которого находится атом С. Расстояния между атомами в тетраэдре 0,154 нм. Электронная проводимость отсутствует, ширина запрещенной зоны 5,7 эВ. Из всех простых веществ алмаз имеет максимальное число атомов, приходящихся на единицу объема. Его плотность 3,51 г/см 3. . Твердость по минералогической шкале Мооса (см. МООСА ШКАЛА) принята за 10. Алмаз можно поцарапать только другим алмазом; но он хрупок и при ударе раскалывается на куски неправильной формы. Термодинамически устойчив лишь при высоких давлениях. Однако, при 1800 °C превращение алмаза в графит происходит быстро. Обратное превращение графита в алмаз происходит при 2700°C и давлении 11-12 ГПа.
Графит - слоистое темно-серое вещество с гексагональной кристаллической решеткой. Термодинамически устойчив в широком интервале температур и давлений. Состоит из параллельных слоев, образованных правильными шестиугольниками из атомов С. Углеродные атомы каждого слоя расположены против центров шестиугольников, находящихся в соседних слоях; положение слоев повторяется через один, а каждый слой сдвинут относительно другого в горизонтальном направлении на 0,1418 нм. Внутри слоя связи между атомами ковалентные, образованы sp 2 -гибридными орбиталями. Связи между слоями осуществляются слабыми ван-дер-ваальсовыми (см. МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ) силами, поэтому графит легко расслаивается. Такое состояние стабилизирует четвертая делокализованная p-связь. Графит обладает хорошей электрической проводимостью. Плотность графита 2,1-2,5 кг/дм 3 .
Во всех аллотропических модификациях при обычных условиях углерод химически малоактивен. В химические реакции вступает только при нагревании. При этом химическая активность углерода убывает в ряду сажа-древесный уголь-графит-алмаз. Сажа на воздухе воспламеняется при нагревании до 300°C, алмаз - при 850-1000°C. При горении образуется углекислый газ СО 2 и CO. Нагревая СО 2 с углем, также получают оксид углерода (II) CО:
СО 2 + С = 2СО
С + Н 2 О (перегретый пар) = СО +Н 2
Синтезирован оксид углерода С 2 О 3 .
СО 2 - кислотный оксид, ему отвечает слабая неустойчивая, существующая только в сильно разбавленных холодных водных растворах угольная кислота Н 2 СО 3 . Соли угольной кислоты - карбонаты (см. КАРБОНАТЫ) (К 2 СО 3 , СаСО 3) и гидрокарбонаты (см. ГИДРОКАРБОНАТЫ) (NaHCO 3 , Са(НСО 3) 2).
С водородом (см. ВОДОРОД) графит и древесный уголь реагируют при температуре выше 1200°C, образуя смесь углеводородов. Реагируя со фтором при 900°C, образует смесь фторуглеродных соединений. Пропуская электрический разряд между угольными электродами в атмосфере азота, получают газ циан (CN) 2 ; если в газовой смеси присутствует водород, образуется синильная кислота HCN. При очень высоких температурах графит реагирует с серой, (см. СЕРА) кремнием, бором, образуя карбиды - CS 2 , SiC, В 4 С.
Карбиды получают взаимодействием графита с металлами при высоких температурах: карбид натрия Na 2 C 2 , карбид кальция CaC 2 , карбид магния Mg 2 C 3 , карбид алюминия Al 4 C 3 . Эти карбиды легко разлагаются водой на гидроксид металла и соответствующий углеводород:
Al 4 C 3 + 12Н 2 О = 4Al(ОН) 3 + 3СН 4
С переходными металлами углерод образует металлоподобные химически стойкие карбиды, например, карбид железа (цементит) Fe 3 C, карбид хрома Cr 2 C 3 , карбид вольфрама WС. Карбиды - кристаллические вещества, природа химической связи может быть различной.
При нагревании уголь восстанавливает многие металлы из их оксидов:
FeO + C = Fe + CO,
2CuO+ C = 2Cu+ CO 2
При нагревании восстанавливает серу(VI) до серы(IV) из концентрированной серной кислотой:
2H 2 SO 4 + C = CO 2 + 2SO 2 + 2H 2 O
При 3500°C и нормальном давлении углерод сублимирует.
Применение
Свыше 90% всех первичных источников потребляемой в мире энергии приходится на органическое топливо. 10% добываемого топлива используется в качестве сырья для основного органического и нефтехимического синтеза, для получения пластмасс.
Физиологическое действие
Углерод - важнейший биогенный элемент, является структурной единицей органических соединений, участвующих в построении организмов и обеспечении их жизнедеятельности (биополимеры, витамины, гормоны, медиаторы и другие). Содержание углерода в живых организмах в расчете на сухое вещество составляет 34,5-40% у водных растений и животных, 45,4-46,5% у наземных растений и животных и 54% у бактерий. В процессе жизнедеятельности организмов происходит окислительный распад органических соединений с выделением во внешнюю среду CO 2 . Углекислый газ (см. УГЛЕРОДА ДИОКСИД) , растворенный в биологических жидкостях и природных водах, участвует в поддержании оптимальной для жизнедеятельности кислотности среды. В составе CaCO 3 углерод образует наружный скелет многих беспозвоночных, содержится в кораллах, яичной скорлупе.
При различных производственных процессах частицы угля, сажи, графита, алмаза попадают в атмосферу и находятся в ней в виде аэрозолей. ПДК для углеродной пыли в рабочих помещениях 4,0 мг/м 3 , для каменного угля 10 мг/м 3 .


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "углерод" в других словарях:

    Таблица нуклидов Общие сведения Название, символ Углерод 14, 14C Альтернативные названия радиоуглерод, радиокарбон Нейтронов 8 Протонов 6 Свойства нуклида Атомная масса … Википедия

    Таблица нуклидов Общие сведения Название, символ Углерод 12, 12C Нейтронов 6 Протонов 6 Свойства нуклида Атомная масса 12,0000000(0) … Википедия

    Таблица нуклидов Общие сведения Название, символ Углерод 13, 13C Нейтронов 7 Протонов 6 Свойства нуклида Атомная масса 13,0033548378(10) … Википедия

    - (лат. Carboneum) С, химический. элемент IV группы периодической системы Менделеева, атомный номер 6, атомная масса 12,011. Основные кристаллические модификации алмаз и графит. При обычных условиях углерод химически инертен; при высоких… … Большой Энциклопедический словарь

    - (Carboneum), C, химический элемент IV группы периодической системы, атомный номер 6, атомная масса 12,011; неметалл. Содержание в земной коре 2,3?10 2% по массе. Основные кристаллические формы углерода алмаз и графит. Углерод главный компонент… … Современная энциклопедия

    Углерод - (Carboneum), C, химический элемент IV группы периодической системы, атомный номер 6, атомная масса 12,011; неметалл. Содержание в земной коре 2,3´10 2% по массе. Основные кристаллические формы углерода алмаз и графит. Углерод главный компонент… … Иллюстрированный энциклопедический словарь

    УГЛЕРОД - (1) хим. элемент, символ С (лат. Carboneum), ат. и. 6, ат. м. 12,011. Существует в нескольких аллотропных модификациях (формах) (алмаз, графит и редко карбин, чаоит и лонсдейлит в метеоритных кратерах). С 1961 г. / массы атома изотопа 12С принята … Большая политехническая энциклопедия

    - (символ С), широко распространенный неметаллический элемент четвертой группы периодической таблицы. Углерод образует огромное количество соединений, которые вместе с углеводородами и другими неметаллическими веществами составляют основу… … Научно-технический энциклопедический словарь

Углерод известен с глубокой древности. В 1778 К. Шееле, нагревая графит с селитрой, обнаружил, что при этом, как и при нагревании угля с селитрой, выделяется углекислый газ. Химический состав алмаза был установлен в результате опытов А.Лавуазье (1772) по изучения горения алмаза на воздухе и исследований С.Теннанта (1797), доказавшего, что одинаковые количества алмаза и угля дают при окислении равные количества углекислого газа. Углерод как химический элемент был признан только в 1789 А.Лавуазье. В начале XIX в. старое слово уголь в русской химической литературе иногда заменялось словом "углетвор" (Шерер, 1807; Севергин, 1815); с 1824 г. Соловьев ввел название углерод. Латинское название сarboneum углерод получил от сarbo - уголь.

Получение:

Неполное сжигание метана: СН 4 + О 2 = С + 2Н 2 О (сажа);
Сухая перегонка древесины, каменного угля (древесный уголь, кокс).

Физические свойства:

Известны несколько кристаллических модификаций углерода: графит,алмаз, карбин, графен.
Графит - серо-черная, непрозрачная, жирная на ощупь, чешуйчатая, очень мягкая масса с металлическим блеском. При комнатной температуре и нормальном давлении (0,1 Мн/м 2 , или 1кгс/см 2) графит термодинамически стабилен. При атмосферном давлении и температуре около 3700°С графит возгоняется. Жидкий углерод может быть получен при давлении выше 10,5 Мн/м 2 (1051 кгс/см2) и температурах выше 3700°С. Cтруктура мелкокристаллического графита лежит в основе строения "аморфного" углерода, который не представляет собой самостоятельной модификации (кокс, сажа, древесный уголь). Нагревание некоторых разновидностей "аморфного" углерода выше 1500-1600°С без доступа воздуха вызывает их превращение в графит. Физические свойства "аморфного" углерода очень сильно зависят от дисперсности частиц и наличия примесей. Плотность, теплоемкость, теплопроводность и электропроводность "аморфного" углерода всегда выше, чем графита.
Алмаз - очень твердое, кристаллическое вещество. Кристаллы имеют кубическую гранецентрированную решетку: а=3,560. При комнатной температуре и нормальном давлении алмаз метастабилен. Заметное превращение алмаза в графит наблюдается при температурах выше 1400°С в вакууме или в инертной атмосфере.
Карбин получен искусственно. Он представляет собой мелкокристаллический порошок черного цвета (плотность 1,9 - 2 г/см 3). Построен из длинных цепочек атомов С, уложенных параллельно друг другу.
Графен - мономолекулярный слой (слой, толщиной в одну молекулу) атомов углерода, которые плотно упакованы в двухмерную решетку, по форме напоминающую пчелиные соты. Графен был впервые получен и исследован Александром Геймом и Константином Новоселовым, которые стали за это открытие лауреатами Нобелевской премии по физике 2010 года.

Химические свойства:

Углерод малоактивен, на холоду реагирует только с F 2 (образуя CF 4). При нагревании реагирует со многими неметаллами и сложными веществами, проявляя восстановительные свойства:
CO 2 + C = CO выше 900°С
2H 2 O + C = CO 2 + H 2 выше 1000°С или H 2 O + C = CO + H 2 выше 1200°С
CuO + C = Cu + CO
HNO 3 + 3C = 3 CO 2 + 4 NO + 2 H 2 O
Слабые окислительные свойства проявляются в реакциях с металлами, водородом
Ca + С = CaС 2 карбид кальция
Si + С = CSi карборунд
CaO + C = CaC 2 + CO

Важнейшие соединения:

Оксиды СО, СО 2
Угольная кислота Н 2 СО 3 , карбонаты кальция (мел, мрамор, кальцит, известняк),
Карбиды СаС 2
Органические вещества , например углеводороды, белки, жиры

Применение:

Графит используется в карандашной промышленности, также исполузется как смазка при особо высоких или низких температурах. Алмаз используется в качестве абразивного материала, драгоценных камней в ювелирных украшениях. Алмазным напылением обладают шлифовальные насадки бормашин. В фармакологии и медицине используются соединения углерода - производные угольной кислоты и карбоновых кислот, различные гетероциклы, полимеры и др. Так, карболен (активированный уголь), применяется для абсорбции и выведения из организма различных токсинов; графит (в виде мазей) - для лечения кожных заболеваний; радиоактивные изотопы углерода - для научных исследований (радиоуглеродный анализ). Углерод в виде ископаемого топлива: угля и углеводородов (нефть, природный газ) - один из важнейших источников энергии для человечества.

Карпенко Д.
ХФ ТюмГУ 561гр.

Источники:
Углерод // Википедия. Дата обновления: 18.01.2019. URL: https://ru.wikipedia.org/?oldid=97565890 (дата обращения: 04.02.2019).

Рассматривают как химию соединений углерода, но, отдавая дань уважения истории, по-прежнему продолжают называть ее органической химией. Поэтому так важно более подробно рассмотреть строение атома этого элемента, характер и пространственное направление образуемых им химических связей.

Валентность химического элемента чаще всего определяется числом неспаренных электронов. Атом углерода, как видно из электронно-графической формулы, имеет два неспаренных электрона, поэтому с их участием могут образоваться две электронные пары, осуществляющие две ковалентные связи. Однако в органических соединениях углерод не двух-, а всегда четырехвалентен. Это можно объяснить тем, что в возбужденном (получившем дополнительную энергию) атоме происходит распаривание 2«-электронов и переход одного из них на 2р-орбиталь:

Такой атом имеет четыре неспаренных электрона и может принимать участие в создании четырех ковалентных связей.

Для образования ковалентной связи необходимо, чтобы ор-биталь одного атома перекрывалась с орбиталью другого. При этом чем больше перекрывание, тем прочнее связь.

В молекуле водорода Н 2 образование ковалентной связи происходит за счет перекрывания s-орбиталей (рис. 3).

Расстояние между ядрами атомов водорода, или длина связи, составляет 7,4 * 10 -2 нм, а ее прочность - 435 кДж/моль.

Для сравнения: в молекуле фтора F 2 ковалентная связь образуется за счет перекрывания двух р-орбиталей.

Длина связи фтор-фтор равна 14,2 10 -2 нм, а прочность (энергия) связи - 154 кДж/моль.

Химические связи, образующиеся в результате перекрывания электронных орбиталей вдоль линии связи, называются а-связями (сигма-связями).

Линия связи - прямая, соединяющая ядра атомов. Для в-орбиталей возможен лишь единственный способ перекрывания - с образованием а-связей.

р-Орбитали могут перекрываться с образованием а-связей, а также могут перекрываться в двух областях, образуя ковалентную связь другого вида - за счет «бокового» перекрывания:

Химические связи, образующиеся в результате «бокового» перекрывания электронных орбиталей вне линии связи, т. е. в двух областях, называются п-связями (пи-связями).

Рассмотренный вид связи характерен для молекул этилена С2Н4, ацетилена С2Н2. Но об этом более подробно вы узнаете из следующего параграфа.

1. Запишите электронную формулу атома углерода. Объясните смысл каждого символа в ней.

Каковы электронные формулы атомов бора, бериллия и лития?

Составьте электронно-графические формулы, соответствующие атомам этих элементов.

2. Запишите электронные формулы:

а) атома натрия и катиона Nа + ;

б) атома магния и катиона Мg 2+ ;

в) атома фтора и аниона F - ;

г) атома кислорода и аниона О 2- ;

д) атома водорода и ионов Н + и Н - .

Составьте электронно-графические формулы распределения электронов по орбиталям в этих частицах.

3. Атому какого химического элемента соответствует электронная формула 1s 2 2s 2 2р 6 ?

Какие катионы и анионы имеют такую же электронную формулу? Составьте электронно-графическую формулу атома и этих ионов.

4. Сравните длины связей в молекулах водорода и фтора. Чем вызвано их различие?

5. Молекулы азота и фтора двухатомны. Сравните числа и характер химических связей между атомами в них.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Углерод способен образовывать несколько аллотропных модификаций. Это алмаз (наиболее инертная аллотропная модификация), графит, фуллерен и карбин.

Древесный уголь и сажа представляют собой аморфный углерод. Углерод в таком состоянии не имеет упорядоченной структуры и фактически состоит из мельчайших фрагментов слоев графита. Аморфный углерод, обработанный горячим водяным паром, называют активированным углем. 1 грамм активированного угля из-за наличия в нем множества пор имеет общую поверхность более трехсот квадратных метров! Благодаря своей способности поглощать различные вещества активированный уголь находит широкое применение как наполнитель фильтров, а также как энтеросорбент при различных видах отравлений.

С химической точки зрения аморфный углерод является наиболее активной его формой, графит проявляет среднюю активность, а алмаз является крайне инертным веществом. По этой причине, рассматриваемые ниже химические свойства углерода следует прежде всего относить к аморфному углероду.

Восстановительные свойства углерода

Как восстановитель углерод реагирует с такими неметаллами как, например, кислород, галогены, сера.

В зависимости от избытка или недостатка кислорода при горении угля возможно образование угарного газа CO или углекислого газа CO 2:

При взаимодействии углерода со фтором образуется тетрафторид углерода:

При нагревании углерода с серой образуется сероуглерод CS 2:

Углерод способен восстанавливать металлы после алюминия в ряду активности из их оксидов. Например:

Также углерод реагирует и с оксидами активных металлов, однако в этом случае наблюдается, как правило, не восстановление металла, а образование его карбида:

Взаимодействие углерода с оксидами неметаллов

Углерод вступает в реакцию сопропорционирования с углекислым газом CO 2:

Одним из наиболее важных с промышленной точки зрения процессов является так называемая паровая конверсия угля . Процесс проводят, пропуская водяной пар через раскаленный уголь. При этом протекает следующая реакция:

При высокой температуре углерод способен восстанавливать даже такое инертное соединение как диоксид кремния. При этом в зависимости от условия возможно образование кремния или карбида кремния (карборунда ):

Также углерод как восстановитель реагирует с кислотами окислителями, в частности, концентрированными серной и азотной кислотами:

Окислительные свойства углерода

Химический элемент углерод не отличается высокой электроотрицательностью, поэтому образуемые им простые вещества редко проявляют окислительные свойства по отношению к другим неметаллам.

Примером таких реакций является взаимодействие аморфного углерода с водородом при нагревании в присутствии катализатора:

а также с кремнием при температуре 1200-1300 о С:

Окислительные свойства углерод проявляет по отношению к металлам. Углерод способен реагировать с активными металлами и некоторыми металлами средней активности. Реакции протекают при нагревании:

Карбиды активных металлов гидролизуются водой:

а также растворами кислот-неокислителей:

При этом образуются углеводороды, содержащие углерод в той же степени окисления, что и в исходном карбиде.

Химические свойства кремния

Кремний может существовать, как и углерод в кристаллическом и аморфном состоянии и, также, как и в случае углерода, аморфный кремний существенно более химически активен, чем кристаллический.

Иногда аморфный и кристаллический кремний, называют его аллотропными модификациями, что, строго говоря, не совсем верно. Аморфный кремний представляет собой по сути конгломерат беспорядочно расположенных друг относительно друга мельчайших частиц кристаллического кремния.

Взаимодействие кремния с простыми веществами

неметаллами

При обычных условиях кремний ввиду своей инертности реагирует только со фтором:

С хлором, бромом и йодом кремний реагирует только при нагревании. При этом характерно, что в зависимости от активности галогена, требуется и соответственно различная температура:

Так с хлором реакция протекает при 340-420 о С:

С бромом – 620-700 о С:

С йодом – 750-810 о С:

Реакция кремния с кислородом протекает, однако требует очень сильного нагревания (1200-1300 о С) ввиду того, что прочная оксидная пленка затрудняет взаимодействие:

При температуре 1200-1500 о С кремний медленно взаимодействует с углеродом в виде графита с образованием карборунда SiC – вещества с атомной кристаллической решеткой подобной алмазу и почти не уступающего ему в прочности:

С водородом кремний не реагирует.

металлами

Ввиду своей низкой электроотрицательности кремний может проявлять окислительные свойства лишь по отношению к металлам. Из металлов кремний реагирует с активными (щелочными и щелочноземельными), а также многими металлами средней активности. В результате такого взаимодействия образуются силициды:

Взаимодействие кремния со сложными веществами

С водой кремний не реагирует даже при кипячении, однако аморфный кремний взаимодействует с перегретым водяным паром при температуре около 400-500 о С. При этом образуется водород и диоксид кремния:

Из всех кислот кремний (в аморфном состоянии) реагирует только с концентрированной плавиковой кислотой:

Кремний растворяется в концентрированных растворах щелочей. Реакция сопровождается выделением водорода.

Органическая химия – химия атома углерода. Число органических соединений в десятки раз больше, чем неорганических, что может быть объяснено только особенностями атома углерода :

а) он находится в середине шкалы электроотрицательности и второго периода, поэтому ему невыгодно отдавать свои и принимать чужие электроны и приобретать положительный или отрицательный заряд;

б) особенное строение электронной оболочки – нет электронных пар и свободных орбиталей (есть еще только один атом с подобным строением – водород, вероятно, поэтому углерод с водородом образует столь много соединений - углеводородов).

Электронное строение атома углерода

С – 1s 2 2s 2 2p 2 или 1s 2 2s 2 2p x 1 2p y 1 2p z 0

В графическом виде:

Атом углерода в возбужденном состоянии имеет следующую электронную формулу:

*С – 1s 2 2s 1 2p 3 или 1s 2 2s 1 2p x 1 2p y 1 2p z 1

В виде ячеек:

Форма s- и p – орбиталей


Атомная орбиталь - область пространства, где с наибольшей вероятностью можно обнаружить электрон, с соответствующими квантовыми числами.

Она представляет собой трехмерную электронную «контурную карту», в которой волновая функция определяет относительную вероятность нахождения электрона в данной конкретной точке орбитали.

Относительные размеры атомных орбиталей увеличиваются по мере возрастания их энергий (главное квантовое число - n), а их форма и ориентация в пространстве определяется – квантовыми числами l и m. Электроны на орбиталях характеризуются спиновым квантовым числом. На каждой орбитали могут находиться не более 2 электронов с противоположными спинами.

При образовании связей с другими атомами атом углерода преобразует свою электронную оболочку так, чтобы образовались наиболее прочные связи, а, следовательно, выделилось как можно больше энергии, и система приобрела наибольшую устойчивость.

Для изменения электронной оболочки атома требуется энергия, которая затем компенсируется за счет образования более прочных связей.

Преобразование электронной оболочки (гибридизация) может быть, в основном, 3 типов, в зависимости от числа атомов, с которыми атом углерода образует связи.

Виды гибридизации:

sp 3 – атом образует связи с 4 соседними атомами (тетраэдрическая гибридизация):

Электронная формула sp 3 – гибридного атома углерода:

*С –1s 2 2(sp 3) 4 в виде ячеек

Валентный угол между гибридными орбиталями ~109°.

Стереохимическая формула атома углерода:

sp 2 – Гибридизация (валентное состояние) – атом образует связи с 3 соседними атомами (тригональная гибридизация):

Электронная формула sp 2 – гибридного атома углерода:

*С –1s 2 2(sp 2) 3 2p 1 в виде ячеек

Валентный угол между гибридными орбиталями ~120°.

Стереохимическая формула sp 2 – гибридного атома углерода:

sp – Гибридизация (валентное состояние ) – атом образует связи с 2 соседними атомами (линейная гибридизация):

Электронная формула sp – гибридного атома углерода:

*С –1s 2 2(sp) 2 2p 2 в виде ячеек

Валентный угол между гибридными орбиталями ~180°.

Стереохимическая формула:

Во всех видах гибридизации участвует s-орбиталь, т.к. она имеет минимум энергии.

Перестройка электронного облака позволяет образовывать максимально прочные связи и минимальное взаимодействие атомов в образующейся молекуле. При этом гибридные орбитали могут быть не идентичные, а валентные углы – разные, например СН 2 Cl 2 и СCl 4

2. Ковалентные связи в соединениях углерода

Ковалентные связи, свойства, способы и причины образования – школьная программа.

Напомню, лишь что:

1. Образование связи между атомами можно рассматривать как результат перекрывания их атомных орбиталей, при этом, чем оно эффективнее (больше интеграл перекрывания), тем прочнее связь.

Согласно расчетным данным, относительные эффективности перекрывания атомных орбиталей S отн возрастают следующим образом:

Следовательно, использование гибридных орбиталей, например, sp 3 -орбиталей углерода в образовании связей с четырьмя атомами водорода, приводит к возникновению более прочных связей.

2. Ковалентные связи в соединениях углерода образуются двумя способами:

А) Если две атомные орбитали перекрываются вдоль их глав­ных осей, то образующуюся связь называют - σ-связью .

Геометрия. Так, при обра­зовании связей с атомами водорода в метане четыре гибридные sр 3 ~орбитали атома углерода перекрываются с s-орбиталями четырех атомов водорода, образуя четыре идентичные прочные σ-связи, располагающиеся под углом 109°28" друг к другу (стандартный тетраэдрический угол). Сходная строго симмет­ричная тетраэдрическая структура возникает также, например, при образовании ССl 4 ; если же атомы, образующие связи с уг­леродом, неодинаковы, например в случае СН 2 С1 2 , пространст­венная структура будет несколько отличаться от полностью симметричной, хотя по существу она остается тетраэдрической.

Длина σ-связи между атомами углерода зависит от гибридизации атомов и уменьшается при переходе от sр 3 – гибридизации к sр. Это объясняется тем, что s – орбиталь находится ближе к ядру, чем р-орбиталь, поэтому, чем больше её доля в гибридной орбитале, тем она короче, а следовательно, короче и образующаяся связь

Б) Если две атомные p -орбитали, расположенные параллельно друг другу, осуществляют боковое перекрывание над и под плоскостью, где расположены атомы, то образующуюся связь называют - π (пи) -связью

Боковое перекрывание атомных орбиталей менее эффективно, чем перекры­вание вдоль главной оси, поэтому π -связи менее прочны, чем σ -связи. Это проявляется, в частности, в том, что энергия двойной углерод-углеродной связи превышает энергию одинарной связи менее чем в два раза. Так, энергия связи С-С в этане равна 347 кДж/моль, тогда как энергия связи С = С в этене составляет только 598 кДж/моль, а не ~ 700 кДж/моль.

Степень бокового перекрывания двух атомных 2р-орбиталей , а следовательно, и прочность π -связи максимальна, если два атома углерода и четыре связанные с ними атомы расположены строго в одной плоскости , т. е. если они копланарны , поскольку только в этом случае атомные 2р-орбитали точно параллельны одна другой и поэтому способны к максимальному перекрыванию. Любое отклонение от копланарного состояния вследствие пово­рота вокруг σ -связи, соединяющей два атома углерода, приве­дет к уменьшению степени перекрывания и соответственно к снижению прочности π -связи, которая, таким образом, способ­ствует сохранению плоскостности молекулы.

Вращение вокруг двойной углерод-углеродной связи невозможно.

Распределение π -электронов над и под плоскостью молекулы означает су­ществование области отрицательного заряда , готовой к взаимо­действию с любыми электронодефицитными реагентами.

Атомы кислорода, азота и др. также имеют разные валентные состояния (гибридизации), при этом их электронные пары могут находиться как на гибридных, так и p-орбиталях.