Холодильные машины и установки. Устройство, виды, принцип действия холодильных машин. Устройство и принцип работы холодильной установки Из чего состоит морозильная камера

Холодильные машины широко используются в различных областях промышленности. Они предназначены для отвода тепла от объектов, температура которых должна быть ниже, чем у окружающей среды. Низшим порогом является минус 150 градусов, а высшим - плюс 10.

Устройства применяют для охлаждения продуктов питания и жидкостей (например, шкафы для машины чиллеры). Существует оборудование для охлаждения пластмасс, используемое в химической промышленности и других сферах.

Среди всех используемых для охлаждения устройств наибольший интерес представляют холодильные комплектные машины. Это оборудование, которое подобрано специальным образом, учитывая цели его использования.

Например, применяют устройства для продуктов, позволяющие сохранить потребительские свойства товаров; приспособления для охлаждения жидкостей, предназначенных для химической деятельности, и т.д. Такие машины монтируются в месте размещения холодильной камеры и дополнительно могут оснащаться различными компонентами, которые расширяют функционал устройств.

Спросом также пользуются такие холодильные машины, как генераторы чешуйчатого льда. Они применяются в мясной, рыбной, хлебобулочной и колбасной индустрии. Камеры и шкафы для заморозки (шоковой) позволяют хранить пельмени, рыбу, мясо, овощи, ягоды и фрукты.

Принцип действия холодильной установки


Для получения искусственного холода в технике используется свойство жидкости изменять свою температуру кипения в зависимости от давления.

Чтобы превратить жидкость в пар, к ней необходимо подвести некоторое количество тепла. Наоборот, превращение пара в жидкость (процесс конденсации) совершается при отнятии тепла от пара.

Холодильная установка состоит из четырех основных частей: компрессора, конденсатора, регулирующего вентиля и воздухоохладителя (испарителя), соединенных последовательно между собой трубопроводами.

В этой схеме по замкнутому контуру циркулирует холодильный агент - вещество, способное кипеть при низких температурах, зависящих от давления паров в воздухоохладителе. Чем ниже это давление, тем ниже и температура кипения. Процесс-кипения холодильного агента сопровождается отнятием тепла от окружающей среды, в которой находится воздухоохладитель, вследствие чего эта среда охлаждается.

Образующиеся в воздухоохладителе пары холодильного агента отсасываются компрессором, сжимаются в нем и нагнетаются в конденсатор. В процессе сжатия давление и температура паров холодильного агента повышается. Таким образом, компрессор создает, с одной стороны, пониженное давление в воздухоохладителе, необходимое для кипения холодильного агента при низкой температуре, и, с другой, повышенное давление нагнетания, при котором возможен переход холодильного агента из компрессора в конденсатор.

В конденсаторе происходит конденсация горячих паров холодильного агента, т. е. превращение их в жидкость. Конденсация паров осуществляется в результате отнятия от них тепла воздухом, охлаждающим конденсатор.

Для получения холода необходимо, чтобы температура кипения (испарения) холодильного агента была ниже температуры охлаждаемой среды.

Холодильная установка АР-3 представляет собой единый агрегат, смонтированный на каркасе с теплоизоляционной стенкой, отделяющей испарительную часть (воздухоохладитель) oт остального оборудования. Испарительная часть входит-в проем, сделанный в передней стенке грузового помещения. Наружный воздух засасывается через конденсатор осевым вентилятором внутрь машинного отделения.

На одном валу с вентилятором конденсатора расположен-вентилятор воздухоохладителя, осуществляющий циркуляцию-воздуха в грузовом помещении.

Таким образом, в холодильной установке АР-3 имеются две-независимые воздушные системы:
— система циркуляции охлажденного воздуха в грузовом помещении (воздух с пола грузового помещения через направляющий воздуховод засасывается осевым вентилятором в воздухоохладитель, охлаждается и выбрасывается под потолок-грузового помещения);
— система охлаждения конденсатора.

Осевым вентилятором, расположенным внутри машинного отделения, воздух засасывается из окружающей среды через-жалюзи лобовой панели кузова, поступает на конденсатор, охлаждает его и выбрасывается наружу через жалюзи, установленные на боковых дверях машинного отделения.

Для охлаждения карбюраторного двигателя воздух забирается через специальное окно в передней стенке кузова и> выбрасывается внутрь -машинного отделения. Нагретый воздух из машинного отделения выходит наружу через жалюзи боковых дверей.

Щит управления и все приборы автоматики, а также измерительные приборы расположены с левой (по ходу автомобиля) стороны холодильной установки и имеют свободный доступ.

Топливо к карбюраторному двигателю подается из бака, укрепленного в верхней части установки.

Холодильная установка представляет собой замкнутую герметическую систему, состоящую из четырех основных частей: воздухоохладителя, фреонового компрессора, конденсатора и-терморегулирующего вентиля, последовательно соединенных трубопроводами. Эта система заполнена холодильным агентом фреоном-12, который непрерывно циркулирует в ней, переходя1 из одной части в другую.

Компрессор засасывает из воздухоохладителя 8 образовавшиеся при кипении пары фреона, сжимает их до давления конденсации. Одновременно с повышением давления па«-ров повышается и их температура до 70-80 °С. Нагретые пары фреона из компрессора нагнетаются по трубопроводу в конденсатор. В конденсаторе происходит конденсация паров фреона, т. е. превращение их в жидкость. Конденсация паров осуществляется в результате отнятия от них. тепла воздухом, обдувающим наружную поверхность конденсатора.

Жидкий фреон из конденсатора поступает в ресивер (запасную емкость). Из ресивера жидкий фреон направляется в теплообменник, где, проходя по змеевикам, переохлаждается за счет теплообмена с холодными парами фреона, движущимися навстречу из воздухоохладителя. Затем жидкий фреон попадает в фильтр-осушитель, где очищается от влаги и загрязнений влагопоглощающим веществом - силикагелем.

Рис. 2. Холодильная
1 - щит управления; 2 - щит приборов; 3 - блок вентиляторов; 4 - конден 5 - фильтр-осушитель; 9- теплообменник; 10- теплоизоляционная стенка; 1ый двигатель УД-2; 15 - реле-регулятор РР24-Г; 16 - терморегулирующий прессор ФВ-6; 19 - электродвигатель А-51-2;

Из фильтра-осушителя жидкий фреон направляется в тер-морегулирующий вентиль, который служит для регулирования количества фреона, поступающего в воздухоохладитель (испаритель).

В терморегулирующем вентиле, проходя через отверстие малого диаметра, фреон дросселируется, т. е. резко понижает свое давление. При этом давление его понижается от давления конденсации до давления испарения.

Понижение давления приводит к понижению температуры фреона. Фреон в виде парожидкостной смеси поступает через распределитель жидкости в воздухоохладитель, и цикл повторяется.

Фреон, протекая по трубкам воздухоохладителя при низком давлении, интенсивно кипит и, испаряясь, переходит из жидкого состояния в парообразное.

Тепло, необходимое для испарения (скрытая теплота парообразования), воспринимается фреоном через стенки воздухо-охладителя от воздуха грузового помещения, продуваемого вентилятором через ребристую поверхность воздухоохладителя.

Рис. 3. Схема потоков воздуха в холодильной установке: А-поток воздуха для охлаждения конденсатора; Б - поток воздуха для охлаждения карбюраторного двигателя

При этих условиях температура воздуха грузового помещения понижается и продукты, находящиеся в грузовом помещении, передавая свое тепло более холодному воздуху, охлаждаются.

Терморегулирующий вентиль разделяет фреоновую систему на две части: магистраль высокого давления (давление нагнетания или конденсации) - от нагнетательной полости компрессора до терморегулирующего вентиля и магистраль низкого давления (давление всасывания или испарения) - от терморегулирующего вентиля до всасывающей полости компрессора.

Из воздухоохладителя пары фреона по всасывающему трубопроводу отсасываются компрессором и подаются в теплообменник, где они, проходя через межтрубное пространство, перегреваются жидким фреоном, проходящим по змеевику. Затем пары фреона попадают в компрессор, и далее описанный процесс циркуляции фреона в холодильной установке происходит по замкнутому циклу.

В конденсаторе фреон, превращаясь из пара в жидкость, отдает тепло продуваемому воздуху из окружающей атмосферы, а в воздухоохладителе, превращаясь из жидкости в пар, поглощает тепло воздуха грузового помещения, понижая тем самым температуру в грузовом помещении.

Таким образом, в холодильной установке совершается циркуляция холодильного агента - фреона-12, который сам не расходуется, а на получение холода затрачивается лишь механическая энергия компрессора, приводимого в действие карбюраторным или электрическим двигателем.

Мощность холодильной установки определяется холодопроизводительностью за час работы и измеряется количеством тепла (килокалорий в час), которое холодильная установка может отнять в течение часа от охлаждаемой среды, в данном случае от грузового помещения рефрижератора.

Компрессор холодильной установки приводится во вращение через клино-ременную передачу карбюраторным двигателем, а при работе от электрической сети-электродвигателем.

Со шкива компрессора движение передается также клиновым ремнем на генератор постоянного тока и вал вентиляторов, создающих потоки воздуха через конденсатор и воздухоохладитель.

Температура (от -15° до +4 °С) в грузовом помещении кузова поддерживается автоматически при помощи двухпозиционного термореле ТДДА .

Когда в грузовом помещении кузова требуется поддерживать положительную температуру, холодопроизводительность установки можно резко уменьшить при помощи регулирующего крана на всасывающем трубопроводе. При этом золотник крана должен быть повернут до упора по часовой стрелке.

На сегодняшний день наш быт мы не можем представить без приборов, которые охлаждают продукты. Даже на производстве реализовать технологический процесс невозможно без холодильных машин. Так, получается, что холодильные установки необходимы нам повседневной жизни, включая производство и торговлю.

Использовать естественное охлаждение не всегда можно, учитывая сезонность, и возможность снизить температуру максимум до температуры воздуха, а летом это и вовсе не реально. И здесь начинается наша необходимость в приобретении холодильника. основан на том, чтобы при помощи техники реализовать процесс испарения и выработать конденсат.

Среди преимуществ холодильных установок можно выделить автоматическую работу поддержания постоянной низкой температуры, которая будет оптимальной для конкретной категории продуктов. Но это касается фактической пользы, а если брать во внимание и затраты на эксплуатацию, ремонт и техническое обслуживание, то холодильник и вовсе получается выгодной техникой.

Принцип работы холодильной машины основан на охлаждении – физическом процессе, базирующимся на потреблении выделяемого машиной тепла в результате кипения жидкости. С каким показателем температуры жидкая среда доходит до кипения – будет зависеть от происхождения жидкости и уровня оказываемого давления.

Высокий показатель давления – высокая температура кипения. Ровно в такой же зависимости работает этот процесс и обратно: ниже давление – меньше температура закипания и испарения жидкости.

Химические свойства каждого вида жидкости качественно влияют на температуру, необходимую для закипания. Так, например, вода, закипает при 100 градусах, а жидкому азоту необходимо -174 градуса по Цельсию.

Рассмотрим жидкий фреон. Этот хладагент является самым популярным веществом, которым насыщена вся система холодильного оборудования. Кстати, фреон в обычных условиях в открытой емкости может закипеть даже при нормальном показателе атмосферного давления. Причем, этот процесс начнется немедленно, как только фреон сконтактирует с воздухом.


Данное явление непременно сопровождается поглощением окружающего тепла. Вы сможете наблюдать, как сосуд будет покрываться инеем, потому что происходит конденсация и замораживание водных паров воздуха. Это действие завершится только тогда, когда хладагент примет газообразное состояние, или не увеличится давление над фреоном, чтобы прекратить испарение и остановить превращение жидкого фреона в газообразный.

Так можно описать принцип работы холодильной машины простыми словами . Аналогичный цикл выполняет жидкий фреон в системе холодильника. Разница заключается в том, что сосуд не открытый, а специальный – не имеющий доступа воздуху, именуемый узлом теплообменником, а если быть точнее – испарителем.

Закипающий в испарителе хладагент переходит в активную фазу поглощения тепла, исходящего от шланг узла-теплообменника. А трубки, а точнее их материал, будут омываться жидкостью, а это напрямую связано с процессом охлаждения воздуха. Такой процесс не должен прерываться, он постоянный. Для его поддержания необходимо регулярное кипение фреона в испарителе, а значит – постоянное удаление газообразного хладагента и добавление его в жидком состоянии.

Конденсация пара жидкого фреона требует температуру ровно такую, какой она будет в зависимости от атмосферного давления. Выше показатель давления – выше градус для конденсации. Давление в 23 атмосферы необходимо, что конденсировать пары фреона R22, в то время как температура будет равна +55 градусам.

Пары хладагента во время превращения их в жидкость выделяют большое количество тепла в окружающую среду. Холодильник для такого процесса имеет специальный, абсолютно герметичный тепловой обменник, называемым конденсатором. Он предназначен для отвода выделенной тепловой энергии. Выглядит конденсатор как алюминиевый элемент, имеющий ребристую поверхность.


Чтобы пары фреона вывести из испарителя, а давление создать такое, которое будет оптимально благоприятным для конденсации, необходимо специальное насосное устройство – компрессор. Кроме того, в холодильной установке не обойтись без работы регулятора потока фреона. Эта функция отведена дросселирующей капиллярной трубке. Каждый из элементов холодильной системы соединяется между собой трубопроводом, образуя последовательную цепочку – так круг системы замыкается.

Принцип работы холодильной установки на фреоне

Предполагает выполнение реального цикла, который существенно отличается от теоретического. Разница заключается в присутствии такого понятия, как потеря давления. Происходит это во время реального цикла на клапанах компрессора (подробнее о видах компрессора читайте здесь: ) и на его обвязке в частности. Такие потери в последствии необходимо компенсировать.

Для этого следует добиться увеличения работы сжатия, что понизит результативность цикла. В суть этого параметра вложены соотношение мощности агрегата и мощности, необходимой для работы компрессора. А вот насколько эффективно работает установка – параметр сравнительный, который никак не отражается на производительности холодильника.

Принцип работы холодильной установки на фреоне для сравнения: эффективность работы 3,5, то есть на 1 единицу электрической энергии для данной системы приходится 3,5 единицы холода, который она производит. Эффективность машины будет возрастать с ростом данного показателя.

Основные понятия, связанные с работой холодильной машины

Охлаждение в кондиционерах производится за счет поглощения тепла при кипении жидкости. Когда мы говорим о кипящей жидкости, мы, естественно, думаем, что она горячая. Однако это не совсем верно.

Во-первых, температура кипения жидкости зависит от давления окружающей среды. Чем выше давление, тем выше температура кипения, и наоборот: чем ниже давление, тем ниже температура кипения. При нормальном атмосферном давлении, равном 760 мм рт.ст. (1 атм), вода кипит при плюс 100°С, но если давление пониженное, как например в горах на высоте 7000-8000 м, вода начнет кипеть уже при температуре плюс 40-60°С.

Во-вторых, при одинаковых условиях разные жидкости имеют различные температуры кипения.

Например, фреон R-22, широко используемый в холодильной технике, при нормальном атмосферном давлении имеет температуру кипения минус 4°,8°С.

Если жидкий фреон находится в открытом сосуде, то есть при атмосферном давлении и температуре окружающей среды, то он немедленно вскипает, поглощая при этом большое количество тепла из окружающей среды или любого материала, с которым находится в контакте. В холодильной машине фреон кипит не в открытом сосуде, а в специальном теплообменнике, называемом испарителем. При этом кипящий в трубках испарителя фреон активно поглощает тепло от воздушного потока, омывающего наружную, как правило, оребренную поверхность трубок.

Рассмотрим процесс конденсации паров жидкости на примере фреона R-22. Температура конденсации паров фреона, так же, как и температура кипения, зависит от давления окружающей среды. Чем выше давление, тем выше температура конденсации. Так, например, конденсация паров фреона R-22 при давлении 23 атм начинается уже при температуре плюс 55°С. Процесс конденсации фреоновых паров, как и любой другой жидкости, сопровождается выделением большого количества тепла в окружающую среду или, применительно к холодильной машине, передачей этого тепла потоку воздуха или жидкости в специальном теплообменнике, называемом конденсатором.

Естественно, чтобы процесс кипения фреона в испарителе и охлаждения воздуха, а также процесс конденсации и отвод тепла в конденсаторе были непрерывными, необходимо постоянно “подливать” в испаритель жидкий фреон, а в конденсатор постоянно подавать пары фреона. Такой непрерывный процесс (цикл) осуществляется в холодильной машине.

Наиболее обширный класс холодильных машин базируется на компрессионном цикле охлаждения, основными конструктивными элементами которого являются компрессор, испаритель, конденсатор и регулятор потока (капиллярная трубка), соединенные трубопроводами и представляющие собой замкнутую систему, в которой циркуляцию хладагента (фреона) осуществляет компрессор. Кроме обеспечения циркуляции, компрессор поддерживает в конденсаторе (на линии нагнетания) высокое давление порядка 20-23 атм.

Теперь, когда рассмотрены основные понятия, связанные с работой холодильной машины, перейдем к более подробному рассмотрению схемы компрессионного цикла охлаждения, конструктивному исполнению и функциональному назначению отдельных узлов и элементов.

Рис. 1. Схема компрессионного цикла охлаждения

Кондиционер – это та же холодильная машина, предназначенная для тепловлажностной обработки воздушного потока. Кроме того, кондиционер обладает существенно большими возможностями, более сложной конструкцией и многочисленными дополнительными опциями. Обработка воздуха предполагает придание ему определенных кондиций, таких как температура и влажность, а также направление движения и подвижность (скорость движения). Остановимся на принципе работы и физических процессах, происходящих в холодильной машине (кондиционере). Охлаждение в кондиционере обеспечивается непрерывной циркуляцией, кипением и конденсацией хладагента в замкнутой системе. Кипение хладагента происходит при низком давлении и низкой температуре, а конденсация – при высоком давлении и высокой температуре. Принципиальная схема компрессионного цикла охлаждения показана на рис. 1.

Начнем рассмотрение работы цикла с выхода испарителя (участок 1-1). Здесь хладагент находится в парообразном состоянии с низким давлением и температурой.

Парообразный хладагент всасывается компрессором, который повышает его давление до 15-25 атм и температуру до плюс 70-90°С (участок 2-2).

Далее в конденсаторе горячий парообразный хладагент охлаждается и конденсируется, то есть переходит в жидкую фазу. Конденсатор может быть либо с воздушным, либо с водяным охлаждением в зависимости от типа холодильной системы.

На выходе из конденсатора (точка 3) хладагент находится в жидком состоянии при высоком давлении. Размеры конденсатора выбираются таким образом, чтобы газ полностью сконденсировался внутри конденсатора. Поэтому температура жидкости на выходе из конденсатора оказывается несколько ниже температуры конденсации. Переохлаждение в конденсаторах с воздушным охлаждением обычно составляет примерно плюс 4-7°С.

При этом температура конденсации примерно на 10-20°С выше температуры атмосферного воздуха.

Затем хладагент в жидкой фазе при высокой температуре и давлении поступает в регулятор потока, где давление смеси резко уменьшается, часть жидкости при этом может испариться, переходя в парообразную фазу. Таким образом, в испаритель попадает смесь пара и жидкости (точка 4).

Жидкость кипит в испарителе, отбирая тепло от окружающего воздуха, и вновь переходит в парообразное состояние.

Размеры испарителя выбираются таким образом, чтобы жидкость полностью испарилась внутри испарителя. Поэтому температура пара на выходе из испарителя оказывается выше температуры кипения, происходит так называемый перегрев хладагента в испарителе. В этом случае даже самые маленькие капельки хладагента испаряются и в компрессор не попадает жидкость. Следует отметить, что в случае попадания жидкого хладагента в компрессор, так называемого “гидравлического удара”, возможны повреждения и поломки клапанов и других деталей компрессора.

Перегретый пар выходит из испарителя (точка 1), и цикл возобновляется.

Таким образом, хладагент постоянно циркулирует по замкнутому контуру, меняя свое агрегатное состояние с жидкого на парообразное и наоборот.

Все компрессионные циклы холодильных машин включают два определенных уровня давления. Граница между ними проходит через нагнетательный клапан на выходе компрессора с одной стороны и выход из регулятора потока (из капиллярной трубки) с другой стороны.

Нагнетательный клапан компрессора и выходное отверстие регулятора потока являются разделительными точками между сторонами высокого и низкого давлений в холодильной машине.

На стороне высокого давления находятся все элементы, работающие при давлении конденсации.

На стороне низкого давления находятся все элементы, работающие при давлении испарения.

Несмотря на то, что существует много типов компрессионных холодильных машин, принципиальная схема цикла в них практически одинакова.

Теоретический и реальный цикл охлаждения.

Риc. 2. Диаграмма давления и теплосодержания

Цикл охлаждения можно представить графически в виде диаграммы зависимости абсолютного давления и теплосодержания (энтальпии). На диаграмме (рис. 2) представлена характерная кривая отображающая процесс насыщения хладагента.

Левая часть кривой соответствует состоянию насыщенной жидкости, правая часть – состоянию насыщенного пара. Две кривые соединяются в центре в так называемой “критической точке”, где хладагент может находиться как в жидком, так и в парообразном состоянии. Зоны слева и справа от кривой соответствуют переохлажденной жидкости и перегретому пару. Внутри кривой линии помещается зона, соответствующая состоянию смеси жидкости и пара.

Рис. 3. Изображение теоретического цикла сжатия на диаграмме «Давление и теплосодержание»

Рассмотрим схему теоретического (идеального) цикла охлаждения с тем, чтобы лучше понять действующие факторы (рис. 3).

Рассмотрим наиболее характерные процессы, происходящие в компрессионном цикле охлаждения.

Сжатие пара в компрессоре.

Холодный парообразный насыщенный хладагент поступает в компрессор (точка С`). В процессе сжатия повышаются его давление и температура (точка D). Теплосодержание также повышается на величину, определяемую отрезком НС`-HD, то есть проекцией линии C`-D на горизонтальную ось.

Конденсация.

В конце цикла сжатия (точка D) горячий пар поступает в конденсатор, где начинается его конденсация и переход из состояния горячего пара в состояние горячей жидкости. Этот переход в новое состояние происходит при неизменных давлении и температуре. Следует отметить, что, хотя температура смеси остается практически неизменной, теплосодержание уменьшается за счет отвода тепла от конденсатора и превращения пара в жидкость, поэтому он отображается на диаграмме в виде прямой, параллельной горизонтальной оси.

Процесс в конденсаторе происходит в три стадии: снятие перегрева (D-E ), собственно конденсация (Е-А) и переохлаждение жидкости (А-А`).

Рассмотрим кратко каждый этап.

Снятие перегрева (D-E ).

Это первая фаза, происходящая в конденсаторе, и в течение ее температура охлаждаемого пара снижается до температуры насыщения или конденсации. На этом этапе происходит лишь отъем излишнего тепла и не происходит изменение агрегатного состояния хладагента.

На этом участке снимается примерно 10-20% общего теплосъема в конденсаторе.

Конденсация (Е-А).

Температура конденсации охлаждаемого пара и образующейся жидкости сохраняется постоянной на протяжении всей этой фазы. Происходит изменение агрегатного состояния хладагента с переходом насыщенного пара в состояние насыщенной жидкости. На этом участке снимается 60-80% теплосъема.

Переохлаждение жидкости (А-А`).

На этой фазе хладагент, находящийся в жидком состоянии, подвергается дальнейшему охлаждению, в результате чего его температура понижается. Получается переохлажденная жидкость (по отношению к состоянию насыщенной жидкости) без изменения агрегатного состояния.

Переохлаждение хладагента дает значительные энергетические преимущества: при нормальном функционировании понижение температуры хладагента на один градус соответствует повышению мощности холодильной машины примерно на 1% при том же уровне энергопотребления.

Количество тепла, выделяемого в конденсаторе.

Участок D-A` соответствует изменению теплосодержания хладагента в конденсаторе и характеризует количество тепла, выделяемого в конденсаторе.

Регулятор потока (А`-B).

Переохлажденная жидкость с параметрами в точке А` поступает на регулятор потока (капиллярную трубку или терморегулирующий расширительный клапан), где происходит резкое снижение давления. Если давление за регулятором потока становится достаточно низким, то кипение хладагента может происходить непосредственно за регулятором, достигая параметров точки В.

Испарение жидкости в испарителе (В-C).

Смесь жидкости и пара (точка В) поступает в испаритель, где она поглощает тепло от окружающей среды (потока воздуха) и переходит полностью в парообразное состояние (точка С). Процесс идет при постоянной температуре, но с увеличением теплосодержания.

Как уже говорилось выше, парообразный хладагент несколько перегревается на выходе испарителя. Главная задача фазы перегрева (С-С`) – обеспечение полного испарения остающихся капель жидкости, чтобы в компрессор поступал только парообразный хладагент. Для этого требуется повышение площади теплообменной поверхности испарителя на 2-3% на каждые 0,5°С перегрева. Поскольку обычно перегрев соответствуют 5-8°С, то увеличение площади поверхности испарителя может составлять около 20%, что безусловно оправдано, так как увеличивает эффективность охлаждения.

Количество тепла, поглощаемого испарителем.

Участок HB-НС` соответствует изменению теплосодержания хладагента в испарителе и характеризует количество тепла, поглощаемого испарителем.

Реальный цикл охлаждения.

Рис. 4. Изображение цикла реального сжатия на диаграмме «Давление-теплосодержание»
C`L: потеря давления при всасывании
MD: потеря давления при выходе
HDHC`: теоретический термический эквивалент сжатия
HD`HC`: реальный термический эквивалент сжатия
C`D: теоретическое сжатие
LM: реальное сжатие

В действительности в результате потерь давления, возникающих на линии всасывания и нагнетания, а также в клапанах компрессора, цикл охлаждения отображается на диаграмме несколько иным образом (рис. 4).

Из-за потерь давления на входе (участок C`-L) компрессор должен производить всасывание при давлении ниже давления испарения.

С другой стороны, из-за потерь давления на выходе (участок М-D`), компрессор должен сжимать парообразный хладагент до давлений выше давления конденсации.

Необходимость компенсации потерь увеличивает работу сжатия и снижает эффективность цикла.

Помимо потерь давления в трубопроводах и клапанах, на отклонение реального цикла от теоретического влияют также потери в процессе сжатия.

Во-первых, процесс сжатия в компрессоре отличается от адиабатического, поэтому реальная работа сжатия оказывается выше теоретической, что также ведет к энергетическим потерям.

Во-вторых, в компрессоре имеются чисто механические потери, приводящие к увеличению потребной мощности электродвигателя компрессора и увеличению работы сжатия.

В третьих, из-за того, что давление в цилиндре компрессора в конце цикла всасывания всегда ниже давления пара перед компрессором (давления испарения), также уменьшается производительность компрессора. Кроме того, в компрессоре всегда имеется объем, не участвующий в процессе сжатия, например, объем под головкой цилиндра.

Оценка эффективности цикла охлаждения

Эффективность цикла охлаждения обычно оценивается коэффициентом полезного действия или коэффициентом термической (термодинамической) эффективности.

Коэффициент эффективности может быть вычислен как соотношение изменения теплосодержания хладагента в испарителе (НС-НВ) к изменению теплосодержания хладагента в процессе сжатия (НD-НС).

Фактически он представляет собой соотношение холодильной мощности и электрической мощности, потребляемой компрессором.

Причем он не является показателем производительности холодильной машины, а представляет собой сравнительный параметр при оценке эффективности процесса передачи энергии. Так, например, если холодильная машина имеет коэффициент термической эффективности, равный 2,5, то это означает, что на каждую единицу электроэнергии, потребляемую холодильной машиной, производится 2,5 единицы холода.