Химическая водоочистка на тэц. Удаление накипи. Средство от накипи. Очистка накипи. Умягчение жесткой воды, умягчитель воды, водоподготовка воды, водоподготовка

Одним из самых важных вопросов в энергетике была и остается водоподготовка на ТЭЦ. Для предприятий энергетики вода - основной источник их работы и потому к ее содержанию предьявляются очень высокие требования. Поскольку Россия - страна с холодным климатом, постоянными сильными морозами, то работа ТЭЦ - это, то от чего зависит жизнь людей. Качество воды, подаваемой на теплоэгергоцентраль влияет очень сильно на ее работу. Жесткая вода выливается в очень серьезную проблему для паровых и газовых котельных, а также паровых турбин ТЭЦ, которые обеспечивают город теплом и горячей водой. Чтобы четко понимать, как и на что именно отрицательно влияет жесткая вода, не мешало бы сперва разобраться, что такое ТЭЦ? И с чем ее "едят"? Итак, ТЭЦ - теплоэнергоцентраль - это разновидность тепловой станции, которая не только обеспечивает теплом город, но и поставляет в наши дома и на предприятия горячую воду. Такая электростанция устроена как конденсационная электростанция, но отличается от нее тем, что может отобрать часть теплового пара, уже после того, как он отдал свою энергию.

Паровые турбины бывают разными. В зависимости от вида турбины и отбирается пар с различными показателями. Турбины на энергоцентрали позволяют регулировать количество отбираемого пара. Пар, который был отобран, проходит конденсацию в сетевом подогревателе или подогревателях. Вся энергия из него передается сетевой воде. Вода в свою очередь идет на пиковые водогрейные как котельные, так и тепловые пункты. Если на ТЭЦ перекрываются пути отбора пара, она становится обычной КЭС. Таким образом, теплоэнергоцентраль может работать по двум различным графикам нагрузки:

  • · тепловой график - прямопропорциональная зависимость электрической нагрузки от тепловой;
  • · электрический график - тепловой нагрузки либо нет вообще, либо электрическая нагрузка от нее не зависит. Достоинство ТЭЦ состоит в том, что она совмещает как тепловую энергию, так и электрическую. В отличии от КЭС, оставшееся тепло не пропадает, а идет на отопление. В результате растет коэффициент полезного действия электростанции. У водоподготовки на ТЭЦ он составляет 80 процентов против 30 процентов у КЭС. Правда, об экономичности теплоэнергоцентрали это не говорит. Здесь в цене другие показатели - удельная выработка электричества и КПДцикла. К особенностям расположения ТЭЦ следует отнести тот факт, что строить ее следует в черте города. Дело в том, что передача тепла на расстояния нецелесообразна и невозможна. Поэтому водоподготовка на ТЭЦ всегда строят рядом с потребителями электроэнергии и тепла. Из чего состоит оборудование водоподготовки для ТЭЦ? Это турбины и котлы. Котлы производят пар для турбин, турбины из энергии пара производят энергию электричества. Турбогенератор включает в себя паровую турбину и синхронный генератор. Пар в турбинах получают за счет применения мазута и газа. Эти вещества и нагревают воду в котле. Пар под давлением прокручивает турбину и на выходе получается электроэнергия. Отработанный пар поступает в дома в виде горячей воды для бытовых нужд. Потому то, отработанный пар и должен иметь определенные свойства. Жесткая вода со множеством примесей не даст получить качественный пар, который к тому же можно потом поставить людям для использования в быту. Если пар не отправляют на поставку горячей воды, то его тут же в ТЭЦ охлаждают в градирнях. Если вы видели когда-нибудь огромные трубы на тепловых станциях и как их них валит дым, то это и есть градирни, а дым, вовсе не дым, а пар, который подымается от них, когда происходит конденсация и охлаждение. Как работает водоподготовка на ТЭ? Больше всего влиянию жесткой воды здесь поддается турбина и, конечно же, котлы, которые преобразовывают воду в пар. Главная задача любой ТЭЦ получить в котле чистую воду. Чем так плоха жесткая вода? Каковы ее последствия и почему они обходятся нам так дорого? Жесткая вода отличается от обычной высоким содержанием солей кальция и магния. Именно эти соли под воздействием температуры оседают на нагревательном элементе и стенках бытовых приборов. То же относится и к паровым котлам. Накипь образовывается в месте нагрева и точке кипения по краям самого котла. Удаление накипи в теплообменнике в таком случае затруднено, т.к. накипь нарастает на огромном оборудовании, внутри труб, всевозможных датчиков, систем автоматизации. Промывка котла от накипи на таком оборудовании - это целая многоэтапная система, которая может даже проводится при разборе оборудования. Но это в случае высокой плотности накипи и больших ее залежей. Обычное средство от накипи в таких условиях конечно не поможет. Если говорить о последствиях жесткой воды для быта, то это и влияние на здоровье человека и удорожание использования бытовых приборов. К тому же жесткая вода очень плохо контактирует с моющими средствами. Вы станете использовать на 60 процентов больше порошка, мыла. Расходы будут расти как на дрожжах. Умягчение воды потому и было придумано, чтобы нейтрализовать жесткую воду, ставишь себе в квартиру один умягчитель воды и забываешь, что есть очистка от накипи, средство от накипи.

Накипь отличается еще и плохой теплопроводимостью. Этот ее недостаток главная причина поломок дорогой бытовой техники. Покрытый накипью тепловой элемент просто перегорает, силясь отдать тепло воде. Плюс из-за плохой растворимости моющих средств, стиральную машинку нужно дополнительно включать на полоскание. Это расходы воды, электричества. С любой стороны, умягчение воды - самый верный и экономически выгодный вариант предотвращения образования накипи. А теперь представьте что такое водоподготовка на ТЭЦ в промышленных масштабах? Там средство от накипи используется галлонами. Промывка котла от накипи проводится периодически. Бывает регулярной и ремонтной. Чтобы удаление накипи проходило более безболезненно и нужна водоподготовка. Она поможет предотвратить образование накипи, защитит и трубы и оборудование. С ней жесткая вода не будет оказывать свое разрушительное воздействие в таких угрожающихмасштабах. Если говорить о промышленности и энергетике, то больше всего жесткая вода приносит неприятностей ТЭЦ и котельным. То есть в тех областях, где происходит непосредственно водоподготовка и нагрев воды и перемещение этой теплой воды по трубам водоснабжения. Умягчение воды здесь необходимо, как воздух. Но поскольку водоподготовка на ТЭЦ это работа с огромными обьемами воды, водоподготовка должна быть тщательно просчитана и продумана с учетом всевозможным нюансов. От анализа химического состава воды да места расположения того или иного умягчителя воды. В ТЭЦ водоподготовка - это не только умягчитель воды, это еще и обслуживание оборудования после. Ведь удаление накипи все равно в этом производственном процессе придется делать, с определенной периодичностью. Здесь применяется не одно средство от накипи. Это может быть и муравьиная кислота, и лимонная, и серная. В различной концентрации, обязательно в виде раствора. И применяют тот или иной раствор кислот в зависимости от того из каких составных частей сделан котел, трубы, контроллер и датчики. Итак, на каких обьектах энергетики нужна водоподготовка? Это котельные станции, котлы, это тоже часть ТЭЦ, водонагревательные установки, трубопроводы. Самыми слабыми местами и ТЭЦ в том числе, остаются трубопроводы. Накапливающаяся здесь накипь может привести и к истощению труб и их разрыву. Когда накипь не удаляется во время, то она просто не дает воде нормально проходить по трубам и перегревает их. Наряду с накипью второй проблемой оборудования в ТЭЦ является коррозия. Ее также нельзя спускать на самотек. К чему может привести толстый слой накипи в трубах, которые подводят воду на ТЭЦ? Это сложный вопрос, но ответим на него мы теперь зная, что такое водоподготовка на ТЭЦ. Поскольку накипь - отменный теплоизолятор, то и расход тепла резко растет, а теплоотдача наоборот снижается. КПД котельного оборудования падает в разы, все это в результате может привести и к разрыву труб и взрыву котла.

Водоподготовка воды на ТЭЦ, это то, на чем нельзя экономить. Если в быту, вы все же подумаете, купить ли умягчитель воды или выбрать средство от накипи, то для теплового оборудования такой торг недопустим. На теплоэнергоцентралях подсчитывают каждую копейку, поэтому очистка от накипи при отсутствии системы умягчения обойдется куда дороже. Да и сохранность приборов, их долговечность и надежная эксплуатация тоже играют свою роль. Очищенное от накипи оборудование, трубы, котлы работают на 20-40 процентов эффективнее, чем оборудование не прошедшее очистку или работающее без системы умягчения. Главная особенность водоподготовки воды на ТЭЦ состоит в том, что здесь требуется глубоко обессоленная вода. Для этого нужно использовать точное автоматизированное оборудование. На таком производстве чаще всего применяют установки обратного осмоса и нанофильтрации, а также электродеионизации. Какие этапы включает в себя водоподготовка в энергетике в том числе и на теплоэнергцентрали? Первый этап включает в себя механическую очистку от всевозможных примесей. На этом этапе из воды удаляются все взвешенные примеси, вплоть до песка и микроскопических частиц ржавчины и т.п. Это так называемая грубая очистка. После нее вода выходит чистой для глаз человека. В ней остаются только растворенные соли жесткости, железистые соединения, бактерии и вирусы и жидкие газы.

Разрабатывая систему водоподготовки воды нужно учитывать такой нюанс, как источник водопоставки. Это водопроводная вода из систем централизованного водоснабжения или это вода из первичного источника? Разница в водоподготовке состоит в том, что вода из систем водоснабжения уже прошла первичную очистку. Из нее нужно убирать только соли жесткости, и обезжелезивать при необходимости. Вода из первичных источников - это вода абсолютно не обработанная. То есть, имеем дело с целым букетом. Здесь обязательно нужно проводить химический анализ воды, чтобы понимать с какими примесями имеем дело и какие фильтры ставить для умягчения воды и в какой последовательности. После грубой очистки в системе идет следующий этап под названием ионообменное обезсоливание. Здесь устанавливают ионообменный фильтр. Работает на основе ионообменных процессов. Главный элемент - ионообменная смола, которая включает в себя натрий. Он образует со смолой непрочные соединения. Как только жесткая вода на ТЭЦ попадает в такой умягчитель, то соли жесткости мгновенно выбивают натрий из структуры и прочно встают на его место. Восстанавливается такой фильтр очень просто. Картридж со смолой перемещается в бак регенерации, где находится насыщенный соляной раствор. Натрий снова занимает свое место, а соли жесткости вымываются в дренаж. Следующий этап - это получение воды с заданными характеристиками. Здесь применяют установку водоподготовки воды на ТЭЦ. Главное ее достоинство - получение 100-процентно чистой воды, с заданными показателями щелочности, кислотности, уровнем минерализации. Если предприятию нужна техническая вода, то установка обратного осмоса создавалась именно на такие случаи.

Главной составляющей частью этой установки является полунепроницаемая мембрана. Селективность мембраны меняется, в зависимости от ее сечения можно получить воду с разными характеристиками. Эта мембрана разделяет бак на два части. В одной части находится жидкость с высоким содержанием примесей, в другой части жидкость с низким содержанием примесей. Воду запускают в высококонцентрированный раствор, она медленно просачивается через мембрану. На установку подается давление, под воздействием его вода останавливается. Потом давление резко увеличивают, и вода начинает течь обратно. Разность этих давлений называют осматическим давлением. На выходе получается идеально чистая вода, а все отложения остаются в менее концентрированном растворе и выводятся в дренаж.

Нанофильтрация по сути тот же обратный осмос, только низконапорный. Поэтому принцип действия тот же, только напор воды меньше. Следующий этап - устранение из воды, растворенных в ней газов. Поскольку в ТЭЦ нужен чистый пар без примесей, очень важно удалить из воды, растворенные в ней кислород, водород и углекислый газ. Устранение примесей жидких газов в воде называется декарбонацией и деаэрацией. После этого этапа вода готова для подачи в котлы. Пар получается именно той концентрации и температуры, которая необходима.

Как видно, из всего вышеописанного, водоподготовка воды в ТЭЦ - один самых главных составляющих производственного процесса. Без чистой воды, не будет качественного хорошего пара, а значит, не будет электричества в нужном обьеме. Поэтому водоподготовкой в теплоэнергоцентралях нужно заниматься плотно, доверять эту службу исключительно профессионалам. Правильно спроектированная система водоподготовки - это гарантия долгосрочной службы оборудования и получения качественных услуг энергопоставок.

Основные требования наших Заказчиков в сфере водоподготовки для теплоэнергетики - безопасность, надёжность, экономичность, экологичность и качество оборудования и очищенной воды.

Ухудшение качества питательной воды в процессе водоподготовки ТЭЦ или ГРЭС ведёт к активной коррозии металла, образованию накипи и отложений на поверхностях нагрева, теплопередающих поверхностях, отложений в проточной части паровых турбин, шлама в оборудовании и трубопроводах. В этом случае работа энергообъектов становится неэкономичной и небезопасной.

Нормативная документация, устанавливающая требования к качеству водоподготовки для теплоэнергетики, жёстко регламентирует требования к питательной воде, к очистке конденсатов, к сбросам от ТЭЦ и ко всем видам работ: к проектированию, изготовлению, монтажу и ПНР водоподготовительного оборудования. Регламентирующие документы: ВНТП, ГОСТ, СНиП, МУ, СТО, РД, требования производителей котлового и турбинного оборудования и пр.

Экодар в своей деятельности руководствуется всей современной нормативной базой, благодаря чему наши Заказчики гарантированно получают оптимальные системы очистки воды, спроектированные, изготовленные, смонтированные, и отлаженные силами компании Экодар, полностью готовые к вводу в эксплуатацию.

Основные технологические решения по очистке воды и водоподготовке для теплоэнергетики применяются в зависимости от исходных условий и конечных требований. Так, для котлов низкого давления часто используются простые схемы умягчения с предочисткой. Для котлов среднего и высокого давления на ТЭЦ и ГРЭС применяются более сложные многоступенчатые схемы обессоливания с использованием нанофильтрации, и качество воды на выходе из ВПУ отвечает самым высоким требованиям.

Предварительная очистка:

    осветление как в традиционных осветлителях, так и в осветлителях-флотаторах;

    механическое фильтрование с помощью самопромывных сетчатых, дисковых, напорных и безнапорных осветлительно-сорбционных фильтров;

    ультрафильтрация.

Обессоливание:

    ионный обмен, прямоточный или противоточный, одно- или двух ступенчатый, в зависимости от качества исходной воды и конечных требований;

    обратноосмотическое обессоливание, одно- или двухступенчатое.

Глубокое обессоливание:

В процессе разработки технологических схем очистки воды с использованием ультрафильтрации и нанофильтрации Экодар учитывает все возможности повторного использования конденсатов и дренажей, промывных вод, их очистки и возврата в цикл систем водоподготовки, поскольку и мы, и наши Заказчики ответственно относимся к окружающей среде и её защите.

Организация водооборотных циклов на объектах теплоэнергетики также требует профессионального и ответственного подхода. Экодар совместно со своими партнерами предлагает современные программы дозирования, контроля и стабилизации воды.

Понятие ультрафильтрации

Принцип ультрафильтрации основан на «продавливании» воды через полупроницаемую мембрану. Основное отличие данной технологии от традиционного объемного фильтрования заключается в том, что большинство задерживаемых частиц оседает на поверхности мембраны, создавая дополнительный фильтрующий слой, обладающий собственным сопротивлением. Ультрафильтрация позволяет удалить из воды взвешенные вещества, водоросли, микроорганизмы, вирусы и бактерии, а также значительно снизить мутность. Также данный способ очистки воды уменьшает ее цветность и окисляемость. Использование ультрафильтрации эффективно заменяет такие этапы водоподготовки, как отстаивание и осаждение.

Технология нанофильтрации

Технология нанофильтрации объединяет особенность ультрафильтрации и обратного осмоса. Для очистки воды путем нанофильтрации используют заряженные и электронейтральные полимерные мембраны, а также керамические мембраны, близкие по размерам пор к ультрафильтрационным. Благодаря ультратонкой полупроницаемой мембране задерживаются различные растворенные загрязнители, величина которых не превышает величину молекулы. В результате нанофильтрации происходит разделение жидкости на 2 части: концентрат соли и чистую воду.

При нанофильтрации используется мембрана, поры которой в 10–50 раз меньше пор мембраны для ультрафильтрации. Благодаря этому нанофильтрация позволяет исключить возможность проникновение микроорганизмов через мембранные элементы. Кроме этого, применяется более высокое (в 2–3 раза) давление для «проталкивания» воды. Естественно, технология нанофильтрации позволяет удалить любые загрязнения, которые удаляются с помощью механической очистки воды, микро- и ультрафильтрации.

Сравнение характеристик ультрафильтрации и нанофильтрации.

Название метода Рабочее давление, бар Размер удаляемых частиц, АО (10–4 мкм) Соотношение пермеат/исходная вода, % Удаляемые из воды примеси
1

Ультрафильтрация

1,0–4,5 80–2000 85–95 Данный метод используется для удаления из воды взвешенных частиц, коллоидов, цист простейших, водорослей, бактерий, вирусов, высокомолекулярных органических веществ.
2

Нанофильтрация

3,5–20 8–100 50–75 Нанофильтрация предназначена для очистки воды от взвешенных частиц и высокомолекулярных органических растворенных веществ. Также нанофильтрация удаляет 20–85 % растворенных неорганических веществ.

Экодар – патентообладатель в области очистки воды, член СРО по проектированию и СМР. Гарантией качества, надежности, безопасности и экологичности являются наличие в компании Экодар интегрированной системы менеджемента (ИСМ), сертифицированной на соответствие требованиям ISO 9001-2011 и Р ИСО 14001-2007 и высокопрофессиональных отделов и служб:

    Технологического отдела, разрабатывающего и внедряющего технологические схемы, осуществляющего всестороннее обследование объекта, пилотные испытания, и подготовку обоснования выбранных технических решений;

Главный «враг» энергопредприятий – это вода с большим содержанием солей жесткости. Именно поэтому ионообменное, сорбционное или мембранное оборудование на ТЭЦ, ГРЭС, ТЭС является основой системы водоподготовки предприятия.

Водоочистка и водоподготовка в энергетике является одним из основных этапов организации деятельности теплоэлектростанции. Существующие ТЭС вырабатывают тепло за счет нагрева воды и последующей конденсации пара. Именно от исходного состава подпиточного агента и зависит срок службы парогенератора теплоэлектростанции.

В чем отличие фильтров для ТЭЦ, ГРЭС и ТЭС? И как продлить срок службы дорогостоящего оборудования, предназначенного для обогрева жилых домов и промышленных сооружений?

Отличие систем водоподготовки для ТЭЦ, ГРЭС и ТЭС

Большая часть существующего оборудования ТЭЦ, ГРЭС и ТЭС изготавливается из металлических сплавов. Именно поэтому главный «враг» энергопредприятий – это склонные к солеобразованию примеси, содержащиеся в подпиточной воде (соли жесткости и железа).

Все существующие теплоэлектростанции можно разделить на несколько типов (рисунок 1.). Главное отличие ТЭЦ от КЭС в том, что теплоэлектроцентрали производят тепло (в виде поступающей к потребителям горячей воды) и электроэнергию, в то время, как конденсационные теплоэлектростанции за счет многократного конденсационного цикла осуществляют выработку только электроэнергии.

Рисунок 1. Типы теплоэлектростанций

Вода на ГРЭС и АЭС используется для хозяйственно-питьевых нужд (охлаждения реактора или активной рабочей зоны). Вследствие этого система водоподготовки на подобных предприятиях ограничивается фильтрами-умягчителями и обессоливателями, улавливающими соли жесткости и оксиды железа, разрушающие трубопроводную систему.

Отличия систем водоподготовки различных типов теплоэлектростанций обусловлены особенностями технологического процесса предприятия. Так, отработанная горячая вода ТЭС просто сбрасывается. Таким образом, наиболее мощные фильтры паротурбинной теплоэлектростанции используются именно для очистки поступающего сырья. Горячая вода ТЭЦ используется для отопления жилых домов и производственных корпусов. Именно поэтому система водоочистки теплоэлектроцентрали включает в себя дополнительные модули, предназначенные для улавливания загрязнений, способных привести к коррозии не только барабанов котлов, но и бытовых линий коммуникаций.

Фильтрационные системы для ТЭС

Система водоподготовки энергопредприятий включает несколько этапов очистки от загрязнений.

Таблица 2. Типы системы водоподготовки для энергопредприятий

Этап водоподготовки

Используемые фильтры

Осветление воды

Отстойники и механические фильтры с добавлением коагулянтов и флокулянтов

Обеззараживание

Озонирование, хлорирование

Умягчение воды

Реагентное отстаивание, катионные фильтры

Обессоливание воды

Анионные фильтры, декарбонизатор, электродиадизатор, обратный осмос, испарители

Деаэрация воды (удаление газообразных веществ)

Термические деаэраторы, вакуумные деаэраторы, атмосферные деаэраторы

Продувка котла

Промывные фильтры

Промывка пара

Специальные реагенты-обессоливатели

На европейских теплоэнергетических предприятиях КПД потерь составляет всего 0,25% в день. Такие высокие результаты работы достигаются за счет комбинации нескольких традиционных и инновационных методов обессоливания и очистки используемого сырья и подпиточной воды. Срок службы оборудования предприятий теплоэнергетики при таких условиях достигает 30-50 лет.

Используемые источники:

1. «Экологически безопасные ТЭС». Электронный журнал энергосервисной компании «Экологические системы»

2. Копылов А.С., Лавыгин В.М. Водоподготовка в энергетике

Е.Н. Бушуев, Н.А. Еремина, А.В. Жадан

Состояние вопроса: На отечественном энергетическом рынке появилось большое количество нового водопод готовительного оборудования с высокими экологическими характеристиками. Широкому внедрению их в производство мешает отсутствие нормативной базы на их использование и противоречивый опыт эксплуатации головных установок на отечественных ТЭС, особенно для вод с повышенным содержанием органических веществ, что характерно для поверхностных вод центра и севера России. В связи с этим существует необходимость совер шенствования традиционных технологий и создания новых систем обессоливания.

Материалы и методы: Использованы результаты эксплуатации новых водоподготовительных установок на ряде отечественных и зарубежных ТЭС.

Результаты: Проведен анализ двух основных направлений совершенствования технологии получения обессоленной воды на ТЭС: противоточного ионирования и на основе мембранных методов. Рассмотрено схемное решение по обеспечению работы установки обратного осмоса при пониженных производительностях.

Выводы: Результаты анализа технологий водоподготовки необходимо учитывать как при проектировании, так и при реконструкции химических цехов ТЭС.

Ключевые слова: тепловые электрические станции, водоподготовка, мембранные методы, обратный осмос, электродеионизация.

НПК "Медиана-фильтр" представляет современные системы очистки воды и водоподготовки:

Общим элементов во всех рассмотренных схемах обессоливания на основе мембранных методов является установка обратного осмоса. При эксплуатации водоподготовительной установки производительность постоянно меняется. Часто возникает значительное снижение производительности, связанное с остановом части теплоэнергетического оборудования или прекращением отдачи производственного пара потребителю, что ведет к проблеме обеспечения минимального расхода обрабатываемой воды через установку обратного осмоса.

При неполной загрузке основного оборудования блоков ПГУ-325 на ИвПГУ снижается потребность в обессоленной воде. Это обусловливает неполную загрузку УОО. Изначально на ИвПГУ были спроектированы и эксплуатировались две параллельно работающих установок обратного осмоса (рис. 4,а). Во время простоя одной из установки обратного осмоса она либо ставится на консервацию, либо ежедневно производится циркуляция воды по корпусам системы обратного осмоса для предотвращения возникновения отложений. Это приводит к дополнительным потерям и увеличению себестоимости обессоленной воды.

Поскольку реагенты, используемые для консервации системы обратного осмоса, имеют достаточно высокую стоимость и периодически требуется подключение второй установки обратного осмоса, то при работе одного из блоков консервация является неэффективным мероприятием.

Для предотвращения потерь, в целях экономии химических реагентов для регенерации фильтров смешанного действия были предусмотрены мероприятия, позволяющие снизить дополнительные потери при простое оборудования, - последовательное включение УОО1 и УОО2 в работу (рис. 4,б). Каждая установка включает 4 корпуса, также работающие по двухступенчатой схеме (рис. 4).

Рис. 4. Технологические схемы включения установки обратного осмоса: а – параллельное; б – последовательное

При последовательном включении установок обратного осмоса (рис. 4,б) пермеат с УОО2, работающей как I ступень, подается на УОО1 (II ступень). При этом концентрат с УОО2 сбрасывается в канализацию, а с УОО1 смешивается с исходной водой, подаваемой на I ступень.

Исходная вода подается на установку обратного осмоса на корпуса АО1-АО3 (рис. 5), затем пермеат подается на ФСД, а концентрат - на АО4, где также разделяется на пермеат и концентрат. Пермеат подается на фильтр смешанного действия, а концентрат сбрасывается в канализацию.

Рис. 5. Технологическая схема обработки воды на установке обратного осмоса №1,2: АО1–АО4 – корпуса установки

После предварительных расчетов в феврале 2012 года были проведены промышленные испытания работы УОО1 и УОО2, включенных последовательно. Результаты расчетов и испытаний приведены в табл. 5 и на рис. 6.

Таблица 5. Расчетные показатели работы системы водоподготовки при включении установки обратного осмоса в одну и две ступени

Показатель

Известкование + коагуляция сульфатом железа

Коагуляция сульфатом алюминия

при включении УОО

при включении установки обратного осмоса

в одну ступень

в две ступени

в две ступени

Производительность установки, м 3 /ч Суммарный часовой расход воды, поступающей на УОО, м 3 /ч

Производительность осветлителя ВТИ-100, м 3 /ч Фильтроцикл ФСД, м 3 Расход кислоты на регенерацию, т/год Расход щелочи на регенерацию, т/год

30,2 21240 0,54 0,54

28,65 63720 0,16 0,16

30,03 63720 0,16 0,16

Рис. 6. Диаграммы содержания ионов натрия (а), кремнекислоты (б) и удельная электропроводность (в) в обработанной на установке обратного осмоса воде

Полученные данные доказывают повышение качества обессоленной воды после второй ступени обработки на установке обратного осмоса. Содержание ионов натрия, кремнекислоты и электропроводность снижаются более чем в 3 раза, также снижается содержание соединений железа и хлоридов.

Прослеживая динамику изменения качества обессоленной воды, можно отметить, что двухступенчатое обессоливание на установке обратного осмоса не позволяет достаточно снизить значение электропроводности, однако позволяет получить требуемые параметры качества воды по содержанию соединений кремнекислоты и натрия для добавочной воды для подпитки котлов- утилизаторов. Повышение качества исходной воды для фильтра смешанного действия позволяет снизить ионную нагрузку на них более чем в 3 раза, что приводит к значительному увеличению фильтроцикла, уменьшению количества воды, используемой на собственные нужды системы водоподготовки, снижению потребности в кислоте и щелочи для регенерации. Следовательно, снижается экологический ущерб, наносимый окружающей среде.

Испытания с коагулянтом - сульфатом алюминия при двухступенчатой схеме работы установок обратного осмоса показали, что существует возможность улучшить качество воды, идущей на установку обратного осмоса, и повысить ресурс работы патронных фильтрующих элементов для обратноосмотической системы.

Таким образом, на отечественном энергетическом рынке появилось большое количество нового водоподготовительного оборудования с высокими экологическими характеристиками. Широкому внедрению его в производство мешает отсутствие нормативной базы на использование и противоречивый опыт эксплуатации головных установок на отечественных ТЭС, особенно для вод с повышенным содержанием органических веществ.

Список литературы

  1. Ходырев Б.Н., Кривчевцов А.Л., Соколюк А.А.
  2. Исследование процессов окисления органических веществ в теплоносителе тЭс и АЭС // Теплоэнергетика. - 2010. - № 7. - С. 11-16.
  3. Опыт освоения новых технологий обработки воды на ТЭС / Б.М. Ларин, А.Н. Коротков, М.Ю. Опарин и др. // Теплоэнергетика. - 2010. - № 8. С. 8-13.
  4. Проектные решения водоподготовительных установок на основе мембранных технологий / А.А. Пантеле­ев, Б.Е. Рябчиков, А.В. Жадан и др. // Теплоэнергетика. - 2012. - №7. - С. 30-36.
  5. Пуск системы водоподготовки ПГУ-410 на Кра­нодарской ТЭЦ / А.А. Пантелеев, А.В. Жадан, С.Л. Громов и др. // Теплоэнергетика. - 2012. - №7. - С. 37-39.
  6. References
  7. Khodyrev, B.N., Krivchevtsov, A.L., Sokolyuk, A.A. Issledovanie protsessov okisleniya organicheskikh veshchestv v teplonositele TES i AES . Teploenergetika, 2010, no. 7, pp. 11-16.
  8. Larin, B.M., Korotkov, A.N., Oparin, M.Yu. Opyt osvoeniya novykh tekhnologiy obrabotki vody na TES . Teploenergetika, 2010, no. 8, pp. 8-13.
  9. Panteleev, A.A., Ryabchikov, B.E., Zhadan, A.V. Proektnye resheniya vodopodgotovitel"nykh ustanovok na osnove membrannykh tekhnologiy . Teploener­getika, 2012, no. 7, pp. 30-36.
  10. Panteleev, A.A., Zhadan, A.V., Gromov, S.L. Pusk sistemy vodopodgotovki PGU-410 na Krasnodarskoy TETs . Teploenergetika, 2012, no. 7, pp. 37-39.
Analysis of Water Treatment Modern Technology at Heat Power Plants

E. N. Bushuev 1 , N. A. Eremina 1 , A. V. Zhadan 2

Ivanovo State Power Engineering University, Ivanovo, Russian Federation 2 Closed Corporation "NPK Mediana-Filtr", Moscow, Russian Federation

Background: Large quantity of new water treatment equipment with high ecological characteristics appears in Russian power engineering field. However, there is no regulatory system to control its wide implementation into production as well as contradictory experience of head units operation in Russian heat power plants, especially for water with high concen­tration of organic substances that is typical for surface water in central and northern parts of Russia. Thus, it is necessary to improve the traditional technologies and design new desalination systems.

Materials and methods: The operation results of new water treatment units at Russian and foreign heat power plants are used.

Results: The analysis of two main improvement directions of receiving desalted water technology at heat power plants is carried out. These directions are counterflow ionization and on the basis of membrane methods. The circuitry of units operation of reverse osmosis plants with low productivity is considered.

Conclusions: The analysis results of water treatment technologies are necessary to be taken into account in designing and reconstruction of heat power plant chemical department.

Теплоэнергетика в современных условиях выжить без водоподготовки не сможет. Отсутствие очистки воды и умягчения может привести к поломке оборудования, некачественному пару или воде, и как результат, парализации всей системы. Постоянное удаление накипи застраховать вас от таких неприятностей, как повышенный расход топлива, образование и развитие коррозии, не может. Только водоподготовка на ТЭЦ может одним махом решить весь комплекс проблем.

Чтобы лучше разобраться в проблемах использования того или иного на теплоэнергоцентралях, начнем с рассмотрения основных понятий. Что такое теплоэнергоцентраль, и как там может помешать повышенная жесткость воды нормальной работе системы?

Итак, ТЭЦ или теплоэлектроцентраль представляет собой один из видов тепловой электростанции. Ее задача состоит не только в генерации электроэнергии. Это еще и источник тепловой энергии для системы теплоснабжения. С таких станций подают горячую воду и пар для обеспечения тепла в домах и на предприятиях.

Теперь пару слов о том, как работает теплоэлектростанция. Работает она, как конденсационная электростанция. Принципиальное различие водоподготовки на ТЭЦ состоит в том, что из генерируемого тепла ТЭЦ есть возможность часть отобрать для других нужд. Способы забора тепловой энергии зависит от типа паровой турбины, которая установлена на предприятии. Также на ТЭЦ можно регулировать то количество пара, которое вам необходимо отобрать.

Все, что отделено, потом концентрируется в сетевом подогревателе или подогревателях. Они уже передают энергию воде, которая идет дальше по системе для передачи своей энергии в пиковых водогрейных котельных и тепловых пунктах. Если на ТЭЦ такой отбор пара не производят, то такая ТЭЦ имеет право квалифицироваться, как КЭС.

Любая водоподготовка на ТЭЦ работает по одному из двух графиков нагрузки. Один из них тепловой, другой, электрический. Если нагрузка тепловая, то электрическая ей полностью подчинена. У тепловой нагрузки над электрической есть паритет.

Если нагрузка электрическая, то она не зависит от тепловой, возможно тепловой нагрузки нет вообще в системе.

Есть также вариант совмещения водоподготовки на ТЭЦ электрической и тепловой нагрузок. Это помогает остаточное тепло использовать в отоплении. В результате коэффициент полезного действия в ТЭЦ значительно выше, чем у КЭС. 80 против 30 процентов. И еще - при строительстве тепловой электростанции, нужно помнить, что передать тепло на дальние расстояния не получится. Поэтому ТЭЦ должна быть расположена в пределах города, который она питает.

У есть главный недостаток – это нерастворимый осадок, который образуется в результате нагрева такой воды. Удалить его не так просто. На ТЭЦ придется останавливать всю систему, иногда ее разбирать, чтобы качественно во всех поворотах и узких отверстиях почистить накипь.

Как мы уже знаем, главный минус накипи – ее плохая теплопроводимость. Из-за этой особенности и возникают основные расходы и проблемы. Даже легкий налет накипи на поверхностях нагревательных поверхностей или нагревательных элементов вызывают резкий рост расходов топлива.

Устранять накипь постоянно не получится, это можно будет делать хотя бы раз в месяц. Расходы топлива при этом будут постоянно расти, да и работа ТЭЦ оставляет желать лучшего, все отопительно-нагревательное оборудование медленно, но верно покрывается накипью. Чтобы потом ее почистить, придется останавливать всю систему. Терпеть убытки от простоев, но чистить накипь.

О том, что пришло время для чистки вам сообщит само оборудование. Начнут внезапно срабатывать системы защиты от перегрева. Если и после этого не удалить накипь, то она полностью блокирует работу теплообменников и котлов, возможны взрывы, образование свищей. Вы всего-то за несколько минут можете лишиться дорогостоящего промышленного оборудования. И восстановить его невозможно. Только покупать новое.

Да и потом, любая очистка от накипи, это всегда испорченные поверхности. Можно использовать водоподготовку на ТЭЦ, но она за вас накипь не устранит, потом все равно придется отчищать ее с помощью механического оборудования. Имея такие покореженные поверхности, мы рискуем получить резкое развитие не только образования накипи, но еще и коррозии. Для оборудования теплоэлектроцентрали, это большой минус. Поэтому и задумались о создании установки водоподготовки на ТЭЦ .

Водоподготовка на мини ТЭЦ

Если говорить в общем, то состав такой будет зависеть, прежде всего, от химического анализа воды. Он покажет оббьем воды, который нужно очищать каждый день. Она покажет примеси, которые нужно устранить, прежде всего. Обойтись без такого анализа при составлении водоподготовки на мини ТЭЦ нельзя. Даже степень жесткости воды он покажет. Мало ли вдруг вода не настолько жесткая, как вам кажется, и проблема в кремниевых или железистых отложениях, а вовсе не в солях жесткости.

В большинстве своем для оборудования ТЭЦ большую проблему составляют примеси, которые находятся в подпиточной воде. Это те самые соли кальция и магния, а также соединения железа. А это значит, что обойтись без обезжелезивателя и электромагнитного умягчителя воды АкваЩит, как минимум будет сложно.

ТЭЦ, как известно, обеспечивает теплой водой и отоплением дома в городе. Поэтому водоподготовка на мини ТЭЦ всегда будет включать в себя не только стандартные . Здесь без вспомогательных фильтров для воды никак не обойтись. Примерно, всю схему водоподготовки можно представить в виде таких этапов, и содержащихся в них фильтрах.

Для ТЭЦ используют воду из первичных источников, очень загрязненную, поэтому первым этапом водоподготовки на мини ТЭЦ будет осветление. Здесь в большинстве случаев используют механические фильтры, а также отстойники. Последние думаю, понятны всем, там воду отстаивают, чтобы примеси твердые оседали.

Механические фильтры включают в себя несколько решеток из нержавеющей стали. Они улавливают в воде все твердые примеси. Сперва, это крупные примеси, потом средние и в конце совсем мелкие, размером с песчинку. Механические фильтры могут использовать с коагулянтами и флокулянтами, чтобы очищать воду и от вредных бактериологических примесей.

Восстанавливают механические фильтры с помощью обычной обратной промывки простой водой.

Следующий этап водоподготовки на мини ТЭЦ - устранение вредных бактерий и вирусов или дезинфекция. Для этого могут использовать, как дешевую, но вредную хлорку, так и дорогой, но безвредный при полном испарении. озон.

Другой вариант обеззараживания воды – использование ультрафиолетового фильтра. Здесь основу составляет ультрафиолетовая лампа, которая облучает всю воду, проходящую через специальную кювету. Проходя, через такой фильтр вода облучается, и в ней погибают все бактерии и вирусы.

После обеззараживания наступает этап . Здесь могут использоваться самые разные фильтры для воды. Это могут быть ионообменные установки, электромагнитный умягчитель воды Акващит или его магнитная вариация. О преимуществах и минусах каждой установки расскажем чуть позже.

Кроме стандартных фильтров можно еще использовать реагентное отстаивание. Но добавление различных примесей, может вылиться потом в образование не растворимых отложений, которые очень плохо удаляются.

После этапа умягчения настает время для обессоливания воды. Для этого в ход идут анионные фильтры, возможно применение декарбонизатора, электродиадизатора, ну и стандартно обратного осмоса или нанофильтрации.

После тонкой очистки воды, нужно в обязательном порядке из воды убрать остаточные растворенные газы. Для этого проводят деаэрацию воды. Здесь могут применять термические, вакуумные, атмосферные деаэраторы. То есть все, что нужно для подпиточной воды, мы сделали. Теперь остаются уже общие действия по подготовке непосредственно самой системы.

Потом в силу вступает этап продувки котла, для этого используют промывные фильтры для воды и последним этапом водоподготовки на мини ТЭЦ является промывка пара. Для этого применяют целый набор химических реагентов для обезсоливания.

В Европе использование качественной водоподготовки на мини ТЭЦ помогает получить коэффициент полезного действия потерь в размере всего лишь четверть процента в день. Как раз комбинирование традиционных методов умягчения воды и очистки с новейшими технологиями помогает достигнуть таких высоких результатов работы системы водоподготовки на мини ТЭЦ. И при этом сама система бесперебойно может прослужить до 30-50 лет, без кардинальных замен этапов.

А теперь вернемся к системе водоподготовки для ТЭЦ и к водоподготовительной установке для ТЭЦ. Здесь используют весь спектр фильтров, главное это правильно выбрать необходимый прибор. Чаще всего система требует применения ни одного, а сразу нескольких фильтров, соединенных последовательно, чтобы вода прошла и стадию умягчения, и стадию обезсоливания.

Самым наиболее используемым является ионообменная установка. В промышленности такой фильтр выглядит как высокий бак в виде цилиндра. Он в обязательном порядке снабжен баком поменьше, это бак регенерации фильтра. Поскольку ТЭЦ работает с водой круглые сутки, то ионообменная установка будет многоступенчатой и включать в себя будет не один, а иногда и три, и четыре фильтра. На всю эту систему приходится один блок управления или контроллер. Каждый фильтр при этом снабжен своим баком регенерации.

Контроллер тщательно следит за тем, сколько воды прошло через установку. Сколько очистил тот или иной фильтр, четко фиксирует время очистки, скорость очистки, по истечении определенного срока очистки или определенного обьема, она подает сигнал на установку. Жесткую воду перераспределяют на другие фильтры, а загрязненный картридж направляют на восстановление. Для этого из установки его вынимают и переносят в бак для регенерации.

Сам процесс системы водоподготовки для ТЭЦ проходит по следующей схеме. Сердце такого ионообменного картриджа – смола, обогащенная слабым натрием. Когда с ней контактирует жесткая вода, происходят метаморфозы. Сильные соли жесткости заменяют слабый натрий. Постепенно картридж весь забивается солями жесткости. Это и есть время для восстановления.

Когда картридж переносят в бак регенерации, там уже в растворенном виде находятся таблетки соли высокой степени очистки. Соляной раствор, который получается в результате очень насыщенный. Процент содержания соли не менее 8-10 процентов. Но только таким большим количеством солей можно устранить из картриджа сильные соли жесткости. В результате промывки образуются сильносоленые отходы, и картридж, вновь наполненный натрием. Его отправляют работать, а вот с отходами возникает проблема. Чтобы их утилизировать, их нужно повторно очистить, то есть снизить степень солености и получить разрешение на утилизацию.

Это большой минус установки, да и расходы на соли получаются немалыми, что тоже дает дорогое обслуживание установке. Зато скорость очистки воды у этого умягчителя самая высокая.

Следующий популярный вариант системы водоподготовки для ТЭЦ – электромагнитный умягчитель воды АкваЩИт. Здесь основную работу выполняет электрический процессор, плата и мощные постоянные магниты. Все это в комплексе создает мощное электромагнитное поле. В воду эти волны поступают по проводке, намотанной с двух сторон от прибора. Причем, нужно помнить, что наматывать провода нужно в разные стороны друг от друга. Каждый провод должен быть обмотан вокруг трубы, не менее семи раз. Эксплуатируя этот прибор, нужно в обязательном порядке следить, что вода не попадала на проводку.

Сами концы проводов нужно обязательно закрыть изоляционными кольцами или обычной изолентой. Так вот, вода проходит по трубе, ее облучают электромагнитные волны. Многим кажется, что влияние подобного – мифическое. Однако, соли жесткости под его влиянием начинают трансформироваться, теряют былую форму и превращаются в тонкие и острые иголки.

Получив новую форму, прилипать к поверхностям оборудования становится неудобно. Тонкое узкое тело иголки не держится на поверхностях. Но зато отлично отдирает старую накипь от стенок оборудования. И делает это тонко и качественно, не используя при этом ни каких вспомогательных средств. Такая работа является главным козырем электромагнитного умягчителя воды АкваЩит. Он сделает и свою работу, то есть умягчит воду и старую накипь уберет очень качественно. И для этого не придется покупать средства от накипи. Все обеспечат мощные постоянные магниты из редкоземельных металлов и электрический ток.

У данного прибора большое количество преимуществ перед другими установками. За ним не нужно ухаживать, он все делает сам. Он полностью уберет из вашего обихода такое понятие, как очистка от накипи. Он в состоянии работать с любыми поверхностями, главное только монтировать его на чистый отрезок трубы.

Потом электромагнитный прибор может проработать без замен в течение четверти столетия. Такое долгое использование гарантируют как раз редкоземельные металлы, которые со временем не теряют практически своих магнитных свойств. Здесь даже привыкания воды к магнитному воздействию нет. Правда, такой прибор не работает со стоячей водой. Также если вода течет одновременно более, чем в двух направлениях, магнитное поле также не работает.

И наконец, пару слов об обратном осмосе, как системе водоподготовки для ТЭЦ. Обойтись при производстве подпиточной воды без этой установки нельзя. Только она гарантирует практически стопроцентную очистку воды. Здесь есть сменные мембраны, которые позволяют получить воду с заданными характеристиками. Но при этом, прибор нельзя применять самостоятельно. Только в комплекте с другими умягчителями, что делает установку более дорогой. Но стопроцентная компенсирует все минусы дороговизны.

Мы подробно рассмотрели все системы водоподготовки для ТЭЦ. Ознакомились со всеми возможными умягчителями, которые могут использоваться в этой системе. Теперь вы сможете легко ориентироваться в мире умягчения.