История изобретения турбин. Изобретение паровых турбин

Огромное значение для энергетики и электрификации имело изобретение и распространение паровых турбин. Принцип их действия был подобен гидравлическим, с той, однако, разницей, что гидравлическую турбину приводила во вращение струя воды, а паровую - струя разогретого пара.

Точно так же, как водяная турбина представляла собой новое слово в истории , паровая продемонстрировала новые возможности . Старая машина Уатта, отметившая в третьей четверти XIX века свой столетний юбилей, имела низкий КПД, поскольку вращательное движение получалось в ней сложным и нерациональным путем.

В самом деле, как мы помним, пар двигал здесь не само вращающееся колесо, а оказывал давление на поршень, от поршня через шток, шатун и кривошип движение передавалось на главный вал. В результате многочисленных передач и преобразований огромная часть энергии, полученной от сгорания топлива, в полном смысле этого слова без всякой пользы вылетала в трубу.

Не раз изобретатели пытались сконструировать более простую и экономичную машину - паровую турбину, в которой струя пара непосредственно вращала бы рабочее колесо. Несложный подсчет показывал, что она должна иметь КПД на несколько порядков выше, чем машина Уатта. Однако на пути инженерной мысли оказывалось множество препятствий.

Для того чтобы турбина действительно превратилась в высокоэффективный , рабочее колесо должно было вращаться с очень высокой скоростью, делая сотни оборотов в минуту. Долгое время этого не могли добиться, так как не умели сообщить надлежащую скорость струе пара.

То лько в 1883 году шведу Густаву Лавалю удалось преодолеть многие затруднения и создать первую работающую паровую турбину. За несколько лет до этого Лаваль получил патент на сепаратор для молока. Для того чтобы приводить его в действие, нужен был очень скоростной привод. Ни один из существовавших тогда двигателей не удовлетворял поставленной задаче.

Лаваль убедился, что только паровая турбина может дать ему необходимую скорость вращения. Он стал работать над ее конструкцией и в конце концов добился желаемого. Турбина Лаваля представляла собой легкое колесо, на которого через несколько поставленных под острым углом сопел наводился пар. В 1889 году Лаваль значительно усовершенствовал свое изобретение, дополнив сопла коническими расширителями. Это значительно повысило КПД турбины и превратило ее в универсальный двигатель.

Принцип действия турбины был чрезвычайно прост. Пар, разогретый до высокой т , поступал из котла по паровой трубе к соплам и вырывался наружу. В соплах пар расширялся до атмосферного давления. Благодаря увеличению объема, сопровождавшему это расширение, получалось значительное увеличение скорости вытекания (при расширении от 5 до 1 атмосферы скорость паровой струи достигала 770 м/с).

Таким образом, заключенная в паре энергия передавалась лопастям турбины. Число сопел и давление пара определяли мощность турбины. Когда отработанный пар не выпускали прямо в воздух, а направляли, как в паровых машинах, в конденсатор и сжижали при пониженном давлении, мощность турбины была наивысшей. Так, при расширении пара от 5 атм. до 1/10 атм. скорость струи достигала сверхзвуковой величины.

Несмотря на кажущуюся простоту, турбина Лаваля была настоящим чудом инженерной мысли. Достаточно представить себе нагрузки, которые испытывало в ней рабочее , чтобы понять, как нелегко было изобретателю добиться от своего детища бесперебойной работы. При огромных оборотах турбинного колеса даже незначительное смещение в центре тяжести вызывало сильную нагрузку на ось и перегрузку подшипников. Чтобы избежать этого, Лаваль придумал насадить колесо на очень тонкую ось, которая при вращении могла бы слегка прогибаться. При раскручивании она сама собой приходила в строго центральное положение, удерживаемое затем при любой скорости вращения. Благодаря этому остроумному решению разрушающее действие на подшипники было сведено до минимума.

Едва появившись, турбина Лаваля завоевала всеобщее признание. Она была намного экономичнее старых паровых двигателей, очень проста в обращении, занимала мало места, легко устанавливалась и подключалась. Особенно большие выгоды турбина Лаваля давала при ее соединении с высокоскоростными машинами пилами, сепараторами, центробежными насосами.

Ее с успехом применяли также как привод для электрогенератора, но все-таки для него она имела чрезмерно большую скорость и потому могла действовать только через редуктор (систему зубчатых колес, понижавших скорость вращения при передаче движения от вала турбины на вал генератора).

В 1884 году английский инженер Чарльз Парсонс получил патент на многоступенчатую реактивную турбину, которую он изобрел специально для приведение в действие электрогенератора. В 1885 году он сконструировал многоступенчатую реактивную турбину, получившую в дальнейшем широкое применение на тепловых электростанциях.

Она имела следующее устройство, напоминающее устройство реактивной гидротурбины. На центральный вал был насажен ряд вращающихся колес с лопатками. Между этими колесами находились неподвижные венцы (диски) с лопатками, имевшими обратное направление. Пар под большим давлением подводился к одному из концов турбины.

Давление на другом конце было небольшое (меньше атмосферного). Поэтому пар стремился пройти сквозь турбину. Сначала он поступал в промежутки между лопатками первого венца. Эти лопатки направляли его на лопатки первого подвижного колеса. Пар проходил между ними, заставляя колеса вращаться. Дальше он поступал во второй венец.

Лопатки второго венца направляли пар между лопатками второго подвижного колеса, которое тоже приходило во вращение. Из второго подвижного колеса пар поступал между лопатками третьего венца и так далее. Всем лопаткам была придана такая форма, что сечение междулопаточных каналов уменьшалось по направлению истечения пара.

Лопатки как бы образовывали насаженные на вал сопла, из которых, расширяясь, истекал пар. Здесь использовалась как активная, так и реактивная его сила. Вращаясь, все колеса вращали вал турбины. Снаружи устройство было заключено в крепкий кожух. В 1889 году уже около трехсот таких турбин использовалось для выработки электроэнергии, а в 1899 году в Эльберфельде была построена первая электростанция с паровыми турбинами Парсонса.

Между тем Парсонс старался расширить сферу применения своего изобретения. В 1894 году он построил опытное судно «Турбиния» с приводом от паровой турбины. На испытаниях оно продемонстрировало рекордную скорость 60 км/ч. После этого паровые турбины стали устанавливать на многих .

Паротурбинная установка - это непрерывно действующий тепловой агрегат, рабочим телом которого является вода и водяной пар. Паровая турбина является силовым двигателем, в котором потенциальная энергия пара превращается в кинетическую, а кинетическая в свою очередь преобразуется в механическую энергию вращения ротора. Ротор турбины непосредственно или при помощи зубчатой передачи соединяется с рабочей машиной. В зависимости от назначения рабочей машины паровая турбина может быть применена в самых различных областях промышленности: в энергетике, на транспорте, в морском и речном судоходстве и т.д. Включает в себя паровую турбину и вспомогательное оборудование.

История создания паровой турбины

В основе действия паровой турбины лежат два принципа создания окружного усилия на роторе, известные с давних времен, - реактивный и активный. Еще в 130 г. до н.э. Герон Александрийский изобрел устройство под названием "эолипил". В соответствии с рисунком 2.1 оно представляло собой наполнявшуюся паром полую сферу с двумя Г-образными соплами, расположенными с противоположных сторон и направленными в разные стороны. Пар вытекал из сопел с большой скоростью, и за счет возникающих сил реакции сфера вращалась.

Второй принцип основан на преобразовании потенциальной энергии пара в кинетическую. Его можно проиллюстрировать на примере машины Джованни Бранки, построенной в 1629 г и изображенной на рисунке 2.2. В этой машине струя пара приводила в движение колесо с лопатками, напоминающее колесо водяной мельницы.

В паровой турбине используются оба указанных принципа. Струя пара под высоким давлением направляется на криволинейные лопатки, закрепленные на дисках. При обтекании лопаток струя отклоняется, и диск с лопатками начинает вращаться. Двигаясь между лопатками в расширяющемся канале (ведь толщина лопаток по мере приближения к хвостовику уменьшается), пар расширяется и ускоряется. В соответствии с законами сохранения энергии и импульса на колесо турбины действует сила, раскручивающая его. В результате энергия давления (потенциальная энергия) пара преобразуется в кинетическую энергию вращения турбины.

Первые турбины, подобные машине Бранки, обладали ограниченной мощностью, поскольку паровые котлы не были способны создавать высокое давление. Как только появилась возможность получать пар высокого давления, изобретатели вновь обратились к турбине. В 1815 г. инженер Ричард Тревитик установил два сопла на ободе колеса паровоза и пропустил через них пар. На сходном принципе было основано устройство лесопильной машины, построенной в 1837 г. американцем Уильямом Эйвери. В одной лишь Англии за 20 лет, с 1864 по 1884 г., было запатентовано более сотни изобретений, так или иначе относящихся к турбинам. Но ни одна из этих попыток не завершилась созданием пригодной для промышленности машины.

Частично эти неудачи объяснялись непониманием физики расширения пара. Дело в том, что плотность пара намного меньше плотности воды, а его "упругость" намного превосходит упругость жидкости, поэтому скорость струи пара в паровых турбинах получается гораздо большей, чем скорость воды в водяных турбинах. Экспериментально было установлено, что к.п.д. турбины достигает максимума тогда, когда окружная скорость лопаток равна приблизительно половине скорости струи пара. Именно по этой причине первые турбины имели очень высокие скорости вращения.

Но большая частота вращения нередко приводила к разрушению вращающихся частей турбины из-за действия центробежных сил. Уменьшения угловой скорости при сохранении окружной скорости можно было бы добиться путем увеличения диаметра диска, на котором крепились лопатки. Однако реализовать эту идею было затруднительно, так как количества вырабатываемого пара высокого давления недоставало для машины большого размера. В связи с этим первые опытные турбины имели небольшой диаметр и короткие лопатки.

Другая проблема, связанная со свойствами пара, доставляла еще больше трудностей. Скорость пара, вырывающегося из сопла, пропорциональна отношению давлений на входе и выходе сопла и достигает максимального значения при отношении давлений, приблизительно равном двум. Дальнейшее повышение перепада давления уже не ведет к увеличению скорости струи. Таким образом, конструкторы не могли в полной мере использовать возможности пара с высоким давлением при использовании сопла с постоянным или суживающимся каналом.

В 1889 г. шведский инженер Карл Густав де Лаваль применил сопло, расширяющееся на выходе. Такое сопло позволило получить гораздо большую скорость пара, и вследствие этого скорость вращения ротора турбины также существенно увеличилась.

На рисунке 2.4 изображена паровая турбина Лаваля. В ней пар поступает к соплу, приобретает в нем значительную скорость и направляется в рабочие лопатки, расположенные на ободе диска турбины. При повороте струи пара в каналах рабочих лопаток возникают силы, раскручивающие диск и связанный с ним вал турбины. Для получения необходимой мощности на одноступенчатой турбине необходимы очень высокие скорости потока пара. Меняя конфигурацию расширяющегося сопла, удалось получить значительную степень расширения пара и, соответственно, высокую скорость (1200…1500 м/с) истечения пара.

Для лучшего использования больших скоростей пара Лаваль разработал такую конструкцию диска, которая выдерживала окружные скорости до 350 м/с, а частота вращения у некоторых турбин достигала 32000 мин-1.

Турбины, у которых весь процесс расширения пара и связанного с ним ускорения парового потока происходит в соплах, получили название активных. К таким устройствам, в частности, можно отнести и турбину Бранки.

В дальнейшем совершенствование активных паровых турбин пошло по пути использования последовательного расширения пара в нескольких ступенях, расположенных друг за другом. В таких турбинах, разработанных в конце прошлого столетия французским ученым Рато и усовершенствованных конструктором Целли, ряд дисков, укрепленных на общем валу, разделен перегородками. В этих перегородках устраивались профилированные отверстия - сопла. На каждой из построенных таким образом ступеней срабатывается часть энергии пара. Преобразование кинетической энергии парового потока происходит без дополнительного расширения пара в каналах рабочих лопаток. Активные многоступенчатые турбины получили широкое распространение в стационарных установках, а также в качестве судовых двигателей.

Наряду с турбинами, в которых поток пара движется приблизительно параллельно оси вала турбины и которые называются аксиальными турбинами, были созданы так называемые радиальные турбины, в которых пар течет в плоскости, перпендикулярной оси турбины. Среди этого типа турбин наибольший интерес представляет турбина братьев Юнгстрем, предложенная в 1912 г.

На боковых поверхностях дисков кольцами постепенно возрастающего диаметра располагаются лопатки реактивных ступеней. Пар в турбину подводится по трубам и далее через отверстия в дисках направляется к центральной камере. Из нее пар течет к периферии через каналы лопаток, укрепленных на дисках. В отличие от обычной турбины, в конструкции братьев Юнгстрем нет неподвижных сопел или направляющих лопаток. Оба диска вращаются во встречных направлениях, поэтому мощность, развиваемая турбиной, передается на два вала. Турбина описанной конструкции получилась весьма компактной.

И все же, несмотря на ряд новых конструктивных решений, примененных в одноступенчатых активных турбинах, их экономичность была невысока. Кроме того, необходимость редукторной передачи для уменьшения частоты вращения ведущего вала электрогенератора тормозила распространение одноступенчатых турбин. Поэтому турбины Лаваля, на раннем этапе турбостроения широко применявшиеся в качестве агрегатов небольшой мощности (до 500 кВт), в дальнейшем уступили место турбинам других типов.

Парсонс создал турбину принципиально новой конструкции. Она отличалась меньшей частотой вращения, и в то же время в ней максимально использовалась энергия пара. Дело в том, что в турбине Парсонса пар расширялся постепенно по мере прохождения через 15 ступеней, каждая из которых представляла собой два венца лопаток: один - неподвижный (с направляющими лопатками, закрепленными на корпусе турбины), другой - подвижный (с рабочими лопатками на диске, закрепленном на вращающемся валу). Плоскости лопаток неподвижных и подвижных венцов были взаимно перпендикулярны.

Пар, направляемый на неподвижные лопатки, расширялся в междулопаточных каналах, скорость его увеличивалась, и он, попадая на подвижные лопатки, заставлял их вращаться. В межлопаточных каналах подвижных лопаток пар дополнительно расширялся, скорость струи возрастала, и возникавшая реактивная сила толкала лопатки.

Благодаря внедрению подвижных и неподвижных венцов лопаток высокая скорость вращения стала ненужной. На каждом из тридцати венцов многоступенчатой турбины Парсонса пар расширялся незначительно, теряя некоторую долю своей кинетической энергии. На каждой ступени (паре венцов) давление падало лишь на 10 %. Ступенчатое расширение пара, лежащее в основе конструкций современных турбин, было лишь одной из многих оригинальных идей, воплощенных Парсонсом.

Другой плодотворной идеей была организация подвода пара к средней части вала. Здесь поток пара разделялся и шел по двум направлениям к левому и правому концу вала. Расход пара в обоих направлениях был одинаковым. Одно из преимуществ, которое давало разделение потока, заключалось в том, что продольные (осевые) силы, возникавшие из-за давления пара на лопатки турбины, уравновешивались. Таким образом, отпадала необходимость в упорном подшипнике. Описанная конструкция используется во многих современных паровых турбинах.

И все-таки первая многоступенчатая турбина Парсонса имела слишком большую частоту вращения - 18000 мин-1. Центробежная сила, действовавшая на лопатки турбины, в 13 тысяч раз превышала силу тяжести. Для того, чтобы уменьшить опасность разрушения вращающихся частей, Парсонс предложил простое решение. Каждый диск изготовлялся из цельного медного кольца, а пазы, в которые входили лопатки, располагались по окружности диска и представляли собой щели, ориентированные под углом 45°. Подвижные диски насаживались на вал и фиксировались на его выступе. Неподвижные венцы состояли из двух полуколец, которые прикреплялись сверху и снизу к корпусу турбины. Лопатки турбины Парсонса были плоскими. Для компенсации уменьшения скорости потока пара по мере его движения к последним ступеням в первой машине Парсонса были реализованы два технических решения: ступенчато наращивался диаметр диска и увеличивалась длина лопаток от 5 до 7 мм. Кромки лопаток были скошены, чтобы улучшить условия обтекания струей.

Парсонс был младшим сыном в семье, получившей во владение землю в Ирландии. Его отец, граф Росс, был талантливым ученым. Он внес большой вклад в технологию отливки и шлифовки больших зеркал для телескопов.

Парсонсы не отдавали своих детей в школу. Их учителями были астрономы, которых граф приглашал для ночных наблюдений с помощью телескопов; в дневное время эти ученые обучали детей. Всячески поощрялись и занятия детей в домашних мастерских.

Чарлз поступил в Тринити-колледж в Дублине, а затем перешел в Сент-Джонс - колледж Кембриджского университета, который окончил в 1877 г.

Поворот в судьбе Парсонса произошел, когда он стал учеником Джорджа Армстронга, известного фабриканта корабельных орудий, и начал работать на его Элсуикской фабрике в г. Ньюкаслапон-Тайне. Причины, которые побудили Парсонса принять такое решение, остались неизвестными: в то время дети из богатых семей редко избирали карьеру инженера. Парсонс завоевал репутацию самого трудолюбивого ученика Армстронга. В период стажировки он получил разрешение работать на самой последней новинке - паровой машине с вращающимися цилиндрами - и между 1877 и 1882 гг. запатентовал несколько своих изобретений.

Первые опыты с турбинами Парсонс начал проводить, работая у Армстронга. С 1881 по 1883 г., т.е. сразу после стажировки, он работал над созданием торпеды, приводимой в движение газом. Особенность движителя торпеды состояла в том, что сгорающее топливо создавало струю газа высокого давления. Струя ударялась в крыльчатку, заставляя ее вращаться. Крыльчатка, в свою очередь, приводила во вращение гребной винт торпеды.

Работы над газовыми турбинами Парсонс прекратил в 1883 г., хотя в его патенте 1884 г. описан современный цикл работы такой турбины. Впоследствии он дал этому объяснение. "Опыты, проводимые много лет назад, - писал он, - и частично имевшие целью удостовериться в реальности газовой турбины, убедили меня в том, что с теми металлами, которые имелись в нашем распоряжении... было бы ошибкой использовать для приведения лопаток во вращение раскаленную струю газов - в чистом ли виде, или в смеси с водой или паром". Это было прозорливое замечание: лишь спустя десять лет после смерти Парсонса появились металлы, обладавшие необходимыми качествами.

В апреле 1884 г. он оформил два предварительных патента, а в октябре и ноябре того же года дал полное описание изобретения. Для Парсонса это был невероятно продуктивный период. Он решил создать и динамо-машину, работающую от турбины на высоких скоростях, которые доступны немногим из современных электрических машин. Впоследствии Парсонс часто повторял, что это изобретение так же важно, как и создание самой турбины. До сегодняшних дней основным применением паровой турбины остается приведение в движение электрических генераторов.

В ноябре 1884 г., когда был создан первый образец турбины, достопочтенному Чарлзу А. Парсонсу было всего 30 лет. Инженерный гений и чутье на потребности рынка сами по себе были недостаточным условием для того, чтобы его детище благополучно вступило в жизнь. На ряде этапов Парсонс должен был вкладывать свои собственные средства, для того чтобы проделанная работа не пропала даром. Во время судебного разбирательства в 1898 г., затеянного с целью продлить срок действия некоторых его патентов, было установлено, что на создание турбины Парсонс израсходовал личных денег в сумме 1107 фунтов 13 шиллингов и 10 пенсов.

История изобретения паровых турбин

Огромное значение для энергетики и электрификации имело изобретение и распространение паровых турбин. Принцип их действия был подобен гидравлическим, с той, однако, разницей, что гидравлическую турбину приводила во вращение струя воды, а паровую - струя разогретого пара. Точно так же, как водяная турбина представляла собой новое слово в истории водяных двигателей, паровая продемонстрировала новые возможности парового двигателя.

Старая машина Уатта, отметившая в третьей четверти XIX века свой столетний юбилей, имела низкий КПД, поскольку вращательное движение получалось в ней сложным и нерациональным путем. В самом деле, как мы помним, пар двигал здесь не само вращающееся колесо, а оказывал давление на поршень, от поршня через шток, шатун и кривошип движение передавалось на главный вал. В результате многочисленных передач и преобразований огромная часть энергии, полученной от сгорания топлива, в полном смысле этого слова без всякой пользы вылетала в трубу. Не раз изобретатели пытались сконструировать более простую и экономическую машину - паровую турбину, в которой струя пара непосредственно вращала бы рабочее колесо. Несложный подсчет показывал, что она должна иметь КПД на несколько порядков выше, чем машина Уатта. Однако на пути инженерной мысли оказывалось множество препятствий. Для того чтобы турбина действительно превратилась в высокоэффективный двигатель, рабочее колесо должно было вращаться с очень высокой скоростью, делая сотни оборотов в минуту. Долгое время этого не могли добиться, так как не умели сообщить надлежащую скорость струе пара.

Первый важный шаг в разработке нового технического средства, потеснившего паровую машину, сделал шведский инженер Карл Густав Патрик Лаваль в 1889 г. .Паровая турбина Лаваля представляет собой колесо с лопатками. Струя воды, образующаяся в котле, вырывается из трубы (сопла), давит на лопатки и раскручивает колесо. Экспериментируя с разными трубками дня подачи пара, конструктор пришёл к выводу, что они должны иметь форму конуса. Так появилось, применяемое до нашего времени, сопло Лаваля.

Только в 1883 году шведу Густаву Лавалю удалось преодолеть многие затруднения и создать первую работающую паровую турбину. За несколько лет до этого Лаваль получил патент на сепаратор для молока. Для того чтобы приводить его в действие, нужен был очень скоростной привод. Ни один из существовавших тогда двигателей не удовлетворял поставленной задаче. Лаваль убедился, что только паровая турбина может дать ему необходимую скорость вращения. Он стал работать над ее конструкцией и в конце концов добился желаемого. Турбина Лаваля представляла собой легкое колесо, на лопатки которого через несколько поставленных под острым углом сопел наводился пар. В 1889 году Лаваль значительно усовершенствовал свое изобретение, дополнив сопла коническими расширителями. Это значительно повысило КПД гидротурбины и превратило ее в универсальный двигатель.

Принцип действия турбины был чрезвычайно прост. Пар, разогретый до высокой температуры, поступал из котла по паровой трубе к соплам и вырывался наружу. В соплах пар расширялся до атмосферного давления. Благодаря увеличению объема, сопровождавшему это расширение, получалось значительное увеличение скорости вытекания (при расширении от 5 до 1 атмосферы скорость паровой струи достигала 770 м/с). Таким образом заключенная в паре энергия передавалась лопастям турбины. Число сопел и давление пара определяли мощность турбины. Когда отработанный пар не выпускали прямо в воздух, а направляли, как в паровых машинах, в конденсатор и сжижали при пониженном давлении, мощность турбины была наивысшей. Так, при расширении пара от 5 атмосфер до 1/10 атмосферы скорость струи достигала сверхзвуковой величины.

Несмотря на кажущуюся простоту, турбина Лаваля была настоящим чудом инженерной мысли. Достаточно представить себе нагрузки, которые испытывало в ней рабочее колесо, чтобы понять, как нелегко было изобретателю добиться от своего детища бесперебойной работы. При огромных оборотах турбинного колеса даже незначительное смещение в центре тяжести вызывало сильную нагрузку на ось и перегрузку подшипников. Чтобы избежать этого, Лаваль придумал насадить колесо на очень тонкую ось, которая при вращении могла бы слегка прогибаться. При раскручивании она сама собой приходила в строго центральное положение, удерживаемое затем при любой скорости вращения. Благодаря этому остроумному решению разрушающее действие на подшипники было сведено до минимума.

Едва появившись, турбина Лаваля завоевала всеобщее признание. Она была намного экономичнее старых паровых двигателей, очень проста в обращении, занимала мало места, легко устанавливалась и подключалась. Особенно большие выгоды турбина Лаваля давала при ее соединении с высокоскоростными машинами: пилами, сепараторами, центробежными насосами. Ее с успехом применяли также как привод электрогенератора, но все-таки для него она имела чрезмерно большую скорость и поэтому могла действовать только через редуктор (систему зубчатых колес, понижавших скорость вращения при передаче движения от вала турбины на вал генератора). паровой турбина лаваль

В 1884 году английский инженер Парсон получил патент на многоступенчатую реактивную турбину, которую он изобрел специально для приведения в действие электрогенератора. В 1885 году он сконструировал многоступенчатую реактивную турбину, получившую в дальнейшем широкое применение на тепловых электростанциях. Она имела следующее устройство, напоминающее устройство реактивной гидротурбины. На центральный вал был насажен ряд вращающихся колес с лопатками. Между этими колесами находились неподвижные венцы (диски) с лопатками, имевшими обратное направление. Пар под большим давлением подводился к одному из концов турбины. Давление на другом конце было небольшое (меньше атмосферного). Поэтому пар стремился пройти сквозь турбину. Сначала он поступал в промежутки между лопатками первого венца. Эти лопатки направляли его на лопатки первого подвижного колеса. Пар проходил между ними, заставляя колеса вращаться. Дальше он поступал во второй венец. Лопатки второго венца направляли пар между лопатками второго подвижного колеса, которое тоже приходило во вращение. Из второго подвижного колеса пар поступал между лопатками третьего венца и так далее. Всем лопаткам была придана такая форма, что сечение междулопаточных каналов уменьшалось по направлению истечения пара. Лопатки как бы образовывали насаженные на вал сопла, из которых, расширяясь, истекал пар. Здесь использовалась как активная, так и реактивная его сила. Вращаясь, все колеса вращали вал турбины. Снаружи устройство было заключено в крепкий кожух. В 1889 году уже около трехсот таких турбин использовалось для выработки электроэнергии, а в 1899 году в Эльберфельде была построена первая электростанция с паровыми турбинами Парсона. Между тем Парсон старался расширить сферу применения своего изобретения. В 1894 году он построил опытное судно «Турбиния» с приводом от паровой турбины. На испытаниях оно продемонстрировало рекордную скорость - 60 км/ч. После этого паровые турбины стали устанавливать на многих быстроходных судах.

Время паровых машин было недолгим. Но еще в древней Греции было известно, как использовать перегретую жидкость в военных действиях. Несколько столетий назад наши предки потратили немало сил и времени для покорения пара, эта тема интересна и сейчас.

Героновский эолипил

История изобретения турбин берет свое начало в античных временах, но использовать пар на благо человечества люди смогли лишь к концу XVII века. Еще в самом начале нашей эры греческий ученый Герон Александрийский показал наглядно, что пар может быть полезным. Его изобретение, называемое по имени изобретателя "Героновский эолипил", представлял собой шар, который вращался силой струи пара. Так появился первый прототип паровой турбины.

Шар Соломона

Далее история изобретения турбин развивалась не так стремительно. К сожалению, большинство изобретений древних греков осталось позабытым и не нашло дальнейшего применения. Лишь в начале XVII столетия описывается нечто похожее на паровую машину, хотя и очень примитивную. Французский ученый-изобретатель Соломон де Ко в своих трудах описывает пустотелый металлический шар с двумя трубками, одна из которых служит для подведения, а другая - для отведения воды. И если нагреть шар, то вода по трубке начнет движение вверх.

Турбина Бранки

В начале 1629 года изобретателем и механиком Джованни Бранки была собрана первая паровая турбина. Принцип действия базируется на преобразовании потенциальной энергии пара в кинетическую и совершении ею полезной работы. Сущность его изобретения заключалась в том, что струя пара своим давлением приводила в движение колесо с лопастями, подобно колесу водяной мельницы. Но такого рода турбины были очень ограничены в мощностях, поскольку невозможно было создать высокое давление струи. Таким образом, история изобретения паровой турбины приобретает новый виток после длительного перерыва.

Паровой бум

В 1825 году инженер-изобретатель Ричард Трейвисик предпринял попытку установить два сопла на колесе паровоза и пропустить через них пар высокого давления. На тех же принципах базировалась и работа лесопилки, сооруженной американским механиком У.Эйвери. Многие авторы хотели, чтобы история изобретения турбины запечатлела и их имена. Только в Англии за 20 лет было выдано патентов более чем на 100 изобретений, связанных с паровыми турбинами или принципами их работы.

Турбина в промышленности

На протяжении 5 лет, начиная с 1884 года, независимо друг от друга швед Карл Густав де Лаваль и ирландец Чарлз Парсонс работали над созданием промышленно пригодной паровой турбины. Лаваль изобрел расширяющееся сопло, которое позволило значительно увеличить скорость выходящего пара, и вследствие этого скорость вращения ротора турбины тоже возросла.

Но благодаря изобретению Лаваля возможно было получить только небольшую мощность на выходе, порядка 500 кВт. Его паровые турбины нашли широкое применение на начальном этапе, но вскоре были заменены более мощными агрегатами других типов.

Реактивная турбина

История изобретения паровых турбин включает в себя также изобретение многоступенчатой реактивной турбины Парсонса. Отличием этого изобретения была меньшая скорость вращения и максимальное использование энергии пара. Такие значительные изменения достигались за счет того, что пар расширялся постепенно, проходя через 15 ступеней в системе турбины. Таким образом, труды ученого нашли практическое применение в промышленности. На этом заканчивается история изобретения турбин, кратко описывая основных деятелей прошлого, занятых в решении этого важного вопроса. С тех пор турбина Парсонса претерпела огромное количество модификаций и усовершенствований, но тем не менее основные принципы остались неизменными.

Изобретение турбин в России

История изобретения паровых турбин писалась и в России. Известный в профессиональных кругах алтайский мастер Залесов трудился на Сузунском заводе. С 1803 по 1813 год из-под его рук вышло большое количество моделей турбин. Ему, как практику с большим опытом, были видны недостатки в конструкциях паровых турбин, что позволяло вносить изменения на начальных этапах конструирования. Его коллегой по цеху был изобретатель Кузьминский. Он трудился в области судостроительной и воздухоплавательной техники и пришел к выводу, что нецелесообразно использовать паровой двигатель поршневого типа в судостроительстве. Кузьминский изобрел и испытал паровую реверсивную турбину судовую своей конструкции.

Она имела маленький вес в 15 кг на одну лошадиную силу мощности. Российская история изобретения турбин, кратко описанная Кузьминским, характеризуется как время, когда отечественные открытия предавались забвению. Безусловно, изобретение паровой турбины дало начало новой эпохе в развитии промышленности и всего общества, послужило толчком к ряду открытий и достижений в других областях науки. Изобретения тех далеких времен находят применение и по сей день, хотя и в значительно модифицированном состоянии. Несмотря на то что наука шагнула далеко вперед, она в большой мере основана на принципах, заложенных в далеком прошлом.

История развития автомобильных турбин берёт своё начало примерно в то же время, что и постройка первых двигателей внутреннего сгорания. Однако попытки создать механизм, похожий на турбину, были отмечены задолго до этого. На заре нового тысечилетия около 2000 лет назад появились предки всех известных ныне турбин, их по сей день можно встретить во многих уголках нашей не объяной планеты - это водяное колесо или мельница. Принцип заложеный в них стал основовологающий для будущего развития всех турбокомпрессоров и паровых турбин пременяемых для получения электроэнергии. Они буквально находились у истоков промышленной революции.

Первым, кто создал конструкцию по типу паровой турбины, был Герон Александрийский . Она представляла собой шар, который вращался под действием пара.

Паровая турбина в виде колеса с лопатками была сделана итальянским учёным Джованни Бранки в 1629 г.

Но только в конце XIX века, когда технологии достигли достаточного уровня, Чарлз Парсонс и Густаф Лаваль (1884 - 1889) независимо друг от друга сконструировали первые пригодные для промышленности устройства.

Особое внимание следует уделить работам Готлиба Даймлера и Рудольфа Дизеля. Эти учёные проводили исследования в области повышения вырабатываемой мощности путём сжатия воздуха, нагнетаемого в камеру сгорания. Их наработки сделали большой прорыв в области технологий ещё в 1885-1896 годах.

В 1905 г. швейцарский инженер Альфред Бюхи запатентовал своё изобретение, которое позволяло увеличить мощность двигателя на 120%. Ему удалось создать механизм, в котором нагнетание воздуха происходило с помощью выхлопных газов. Принято считать, что именно это устройство положило начало развития и внедрения турботехнологий.

В 19-м веке сфера использования турбин ограничивалась корабельной и авиа индустриями. Это связано с тем, что тогда увеличение мощности практиковалось только с крупными двигателями.

Во времена Первой мировой войны турбины использовались на истребителях с двигателями Рено.

Во второй половине 30-х годов технологии пришли к тому, что инженерам удалось создать действительно удачные модели турбин, которые позволяли увеличить максимальный предел высоты.

Наибольшего успеха в развитии авиации достигли американцы, которые разработали уникальный вариант турбонагнеталей. В 1938 году они устанавливали их на истребители Р-38 и бомбардировщики В-17. Через несколько лет инженерами был создан истребитель Р-47, который изначально выпускался с турбиной. Благодаря этому крылатая машина имела выдающиеся характеристики и преимущества перед остальными.

Что касается автомобильной сферы, то тут первыми испытателями благ турбонаддува стали грузовики. Создать турбодвигатель для них в 1938 году взялся завод «Swiss Machine Works Sauer». Такую новинку общество восприняло довольно хорошо.

Легковые автомобили получили турбированные двигатели гораздо позже. Только в 1962 году на рынок вышел Chevrolet Corvair Monza, а через год после него Oldsmobile Jetfire . Несмотря на очевидные преимущества, из-за низкого уровня надёжности модели не были востребованы.

Использование турбин для увеличения мощности спортивных автомобилей привело их ко всеобщему признанию в 70-х годах. В частности, они нашли своё применение у Formula 1. Через время инженеры пришли к выводу, что расход топлива слишком велик для получаемого результата и стали искать альтернативу.

Переломным моментом в развитии турбокомпрессоров стал 1978 год, когда компания Mercedes-Benz выпустила первую в мире модель с дизельным двигателем - 300 SD. Позже за ним последовал VWTurbodiesel. Преимущество таких автомобилей было значительным. Производителям удалось добиться необходимой мощности, дойдя до уровня бензинового, при этом уменьшить уровень вредных выхлопов в атмосферу.

Дизельная турбина имеет более низкие требования к жаропрочности, что позволяет делать её более дешёвой и изощрённой. Именно поэтому турбины чаще всего встречаются на дизельных автомобилях, а все турбоновинки изначально создают под дизельный вариант.