Органические вещества по происхождению. "Номенклатура органических соединений" (учебное пособие)

В настоящее время установлено, что класс органических веществ - самый обширный среди других химических соединений. Что же ученые-химики относят к органическим веществам? Ответ таков: это те вещества, в состав которых включен углерод. Впрочем, из этого правила есть исключения: угольная кислота, цианиды, карбонаты, оксиды углерода не входят в состав органических соединений.

Углерод - очень любопытный в своем роде химический элемент. Его особенность состоит в том, что он может образовывать из своих атомов цепочки. Такая связь оказывается очень стабильной. В органических соединениях углерод демонстрирует высокую валентность (IV). Речь идет о способности образовывать связи с иными веществами. Эти связи вполне могут быть не только одинарными, но также двойными или тройными. По мере возрастания числа связей цепочка из атомов становится короче, стабильной этой связи увеличивается.

Углерод известен также тем, что он может образовывать линейные, плоские и даже объемные структуры. Эти свойства данного химического элемента обусловили такое разнообразие органических веществ в природе. Около трети всей массы каждой клетки человеческого тела составляют органические соединения. Это белки, из которых в основном и построено тело. Это углеводы - универсальное «топливо» для организма. Это жиры, которые позволяют запасать энергию. Гормоны управляют работой всех органов и даже влияют на поведение. А ферменты запускают внутри организма бурные химические реакции. Более того, «исходный код» живого существа - цепочка ДНК - это органическое соединение, в основе которого лежит углерод.

Почти все химические элементы, когда они соединяются с углеродом, способны дать начало органическим соединениям. Чаще всего в природе в состав органических веществ входят:

  • кислород;
  • водород;
  • сера;
  • азот;
  • фосфор.

Развитие теории при изучении органических веществ шло сразу по двум взаимосвязанным направлениям: ученые изучали пространственное расположение молекул соединений и выясняли сущность химических связей в соединениях. У истоков теории строения органических веществ стоял русский химик А.М. Бутлеров.

Принципы классификации органических веществ

В разделе науки, известном как органическая химия, особое значение имеют вопросы классификации веществ. Сложность состоит в том, что описанию подлежат миллионы химических соединений.

Требования к номенклатуре очень строги: она должна быть систематической и пригодной для использования в международных масштабах. Специалисты любой страны должны понимать, о каком соединении идет речь и однозначно представлять его структуру. Предпринимается ряд усилий, которые позволят сделать классификацию органических соединений пригодной для компьютерной обработки.

В основе современной классификации лежит строение углеродного скелета молекулы и наличие в ней функциональных групп.

По строению своего углеродного скелета органические вещества делятся на группы:

  • ациклические (алифатические);
  • карбоциклические;
  • гетероциклические.

Родоначальниками любых соединений в органической химии являются те углеводороды, которые состоят лишь из атомов углерода и водорода. Как правило, молекулы органических веществ содержат в своем составе так называемые функциональные группы. Это - атомы либо группы атомов, которые определяют, какими будут химические свойства соединения. Такие группы также позволяют отнести соединение к тому или иному классу.

Примерами функциональных групп могут служить:

  • карбонильная;
  • карбоксильная;
  • гидроксильная.

Те соединения, которые содержат только одну функциональную группу, именуют монофункциональными. Если в молекуле органического вещества имеется несколько таких групп, они считаются полифункциональными (к примеру, глицерин или хлороформ). Гетерофункциональными будут соединения, где функциональные группы различны по составу. Их в одно и то же время вполне можно отнести к разным классам. Пример: молочная кислота. Ее можно рассматривать как спирт и как карбоновую кислоту.

Переход от класса к классу осуществляется, как правило, с участием функциональных групп, но без изменения углеродного скелета.

Скелетом применительно к молекуле называют последовательность соединения атомов. Скелет может быть углеродным или же содержать так называемые гетероатомы (к примеру, азот, серу, кислород и т.д.). Также скелет молекулы органического соединения может быть разветвленным или неразветвленным; открытым или же циклическим.

Особым типом циклических соединений считаются ароматические: для них не являются характерными реакции присоединения.

Основные классы органических веществ

Известны следующие органические вещества биологического происхождения:

  • углеводы;
  • белки;
  • липиды;
  • нуклеиновые кислоты.

В более подробную классификацию органических соединений включаются вещества, которые не имеют биологического происхождения.

Различают классы органических веществ, в составе которых углерод входит в соединение с другими веществами (кроме водорода):

  • спирты и фенолы;
  • карбоновые кислоты;
  • альдегиды и кислоты;
  • сложные эфиры;
  • углеводы;
  • липиды;
  • аминокислоты;
  • нуклеиновые кислоты;
  • белки.

Строение органических веществ

Большое разнообразие органических соединений в природе объясняется особенностями атомов углерода. Они способны образовывать весьма прочные связи, объединяясь в группы - цепочки. Результатом становятся вполне устойчивые молекулы. Способ, который молекулы используют, чтобы соединиться в цепь, является ключевой особенностью их строения. Углерод способен объединяться как в открытые цепи, так и в замкнутые (их и называют циклическими).

Строение веществ непосредственно влияет на их свойства. Особенности строения дают возможность существовать десяткам и сотням самостоятельных соединений углерода.

Важную роль в поддержании многообразия органических веществ играют такие свойства как гомология и изомерия.

Речь идет о идентичных на первый взгляд веществах: их состав не отличается друг от друга, молекулярная формула одна и та же. А вот строение соединений принципиально различается. Разными будут и химические свойства веществ. К примеру, одно и то же написание имеют изомеры бутан и изобутан. Атомы в молекулах этих двух веществ располагаются в разном порядке. В одном случае они разветвлены, в другом - нет.

Под гомологией понимают характеристику углеродной цепи, где каждый последующий член можно получить, прибавляя к предыдущему одну и ту же группу. Иными словами, каждый из гомологических рядов вполне можно выразить одной и той же формулой. Зная такую формулу, можно без особого труда выяснить состав любого члена ряда.

Примеры органических веществ

Углеводы вполне победили бы в состязании между всеми органическими веществами, если взять их в целом по массе. Это - источник энергии для живых организмов и строительный материал для большинства клеток. Мир углеводов отличается большим разнообразием. Без крахмала и целлюлозы не смогли бы существовать растения. А животный мир стал бы невозможен без лактозы и гликогена.

Еще один представитель мира органических веществ - белки. Всего из двух десятков аминокислот природе удается образовать в организме человека до 5 млн типов белковых структур. В функции этих веществ входит регуляция жизненно важных процессов в организме, обеспечение свертываемости крови, перенос некоторых видов веществ в пределах организма. В виде ферментов белки выступают ускорителями реакций.

Еще один важный класс органических соединений - липиды (жиры). Эти вещества служат в качества запасного источника нужной организму энергии. Они являются растворителями и помогают протеканию биохимических реакций. Липиды участвуют также и в строительстве клеточных мембран.

Очень интересны и другие органические соединения - гормоны. Они отвечают за протекание биохимических реакций и обмен веществ. Это гормоны щитовидной железы заставляют человека испытывать радость или печалиться. А за ощущение счастья, как выяснили ученые, отвечает эндорфин.

Органическое вещество - это химическое соединение, в составе которого присутствует углерод. Исключения составляют только угольная кислота, карбиды, карбонаты, цианиды и оксиды углерода.

История

Сам термин «органические вещества» появился в обиходе ученых на этапе раннего развития химии. В то время господствовали виталистические мировоззрения. Это было продолжение традиций Аристотеля и Плиния. В этот период ученые мужи были заняты разделением мира на живое и неживое. При этом все без исключения вещества четко подразделялись на минеральные и органические. Считалось, что для синтеза соединений «живых» веществ необходима особая «сила». Она присуща всем живым существам, и без нее образовываться органические элементы не могут.

Это смешное для современной науки утверждение господствовало очень долго, пока в 1828 году Фридрих Велер опытным путем его не опроверг. Он смог из неорганического цианата аммония получить органическую мочевину. Это подтолкнуло химию вперед. Однако деление веществ на органические и неорганические сохранилось и в настоящем времени. Оно лежит в основе классификации. Известно почти 27 миллионов органических соединений.

Почему так много органических соединений?

Органическое вещество - это, за некоторым исключением, углеродное соединение. В действительности это очень любопытный элемент. Углерод способен образовывать из своих атомов цепочки. При этом очень важно, что связь между ними стабильна.

Кроме того, углерод в органических веществах проявляет валентность - IV. Из этого следует, что этот элемент способен образовывать с другими веществами связи не только одинарные, но и двойные и тройные. По мере возрастания их кратности, цепочка, состоящая из атомов, станет короче. При этом стабильность связи только увеличивается.

Также углерод имеет способность образовывать плоские, линейные и объемные структуры. Именно поэтому в природе так много разнообразных органических веществ.

Состав

Как было сказано выше, органическое вещество - это соединения углерода. И это очень важно. возникают при его связи практически с любым элементом периодической таблицы. В природе чаще всего в их состав (помимо углерода) входят кислород, водород, сера, азот и фосфор. Остальные элементы встречаются намного реже.

Свойства

Итак, органическим веществом является углеродное соединение. При этом существуют несколько важных критериев, которым оно должно соответствовать. Все вещества органического происхождения обладают общими свойствами:

1. Существующая между атомами различная типология связей непременно приводит к появлению изомеров. Прежде всего они образуются при соединении молекул углерода. Изомеры - это различные вещества, имеющие одну молекулярную массу и состав, но разные химико-физические свойства. Это явление называется изомерией.

2. Еще один критерий - явление гомологии. Это ряды органических соединений, в них формула соседних веществ отличается от предыдущих на одну группу СН 2 . Это важное свойство применяется в материаловедении.

Какие существуют классы органических веществ?

К органическим соединениям относят несколько классов. Они известны всем. липиды и углеводы. Эти группы можно назвать биологическими полимерами. Они участвуют в метаболизме на клеточном уровне в любом организме. Также в эту группу включают нуклеиновые кислоты. Так что можно сказать, что органическое вещество - это то, что мы ежедневно потребляем в пищу, то, из чего состоим.

Белки

Белки состоят из структурных компонентов - аминокислот. Это их мономеры. Белки также называют протеинами. Известно около 200 видов аминокислот. Все они встречаются в живых организмах. Но лишь двадцать из них являются составляющими белков. Их называют основными. Но в литературе также можно встретить и менее популярные термины - протеиногенные и белокобразующие аминокислоты. Формула органического вещества этого класса содержит аминные (-NH 2) и карбоксильные (-СООН) составляющие. Между собой они связанны все теми же углеродными связями.

Функции белков

Белки в организме растений и животных выполняют множество важных функций. Но главная из них - структурная. Белки являются основными компонентами клеточной мембраны и матрикса органелл в клетках. В нашем организме все стенки артерий, вен и капилляров, сухожилий и хрящей, ногтей и волос состоят преимущественно из разных белков.

Следующая функция - ферментативная. Белки выступают в качестве ферментов. Они катализируют протекание в организме химических реакций. Именно они отвечают за распад питательных компонентов в пищеварительном тракте. У растений ферменты фиксируют положение углерода во время фотосинтеза.

Некоторые переносят в организме различные вещества, например, кислород. Органическое вещество также способно присоединяться к ним. Так осуществляется транспортная функция. Белки разносят по кровеносным сосудам ионы металлов, жирные кислоты, гормоны и, конечно же, углекислый газ и гемоглобин. Транспорт происходит и на межклеточном уровне.

Белковые соединения - иммуноглобулины - отвечают за выполнение защитной функции. Это антитела крови. Например, тромбин и фибриноген активно участвуют в процессе свертываемости. Таким образом, они предотвращают большую кровопотерю.

Белки отвечают и за выполнение сократительной функции. Благодаря тому, что миозиновые и актиновые протофибриллы постоянно выполняют скользящие движения относительно друг друга, происходит сокращение мышечных волокон. Но и у одноклеточных организмов происходят подобные процессы. Движение жгутиков бактерий также напрямую связано со скольжением микротрубочек, которые имеют белковую природу.

Окисление органических веществ высвобождает большое количество энергии. Но, как правило, белки расходуются на энергетические нужды очень редко. Это происходит, когда исчерпаны все запасы. Лучше всего для этого подходят липиды и углеводы. Поэтому белки могут выполнять энергетическую функцию, но только при определенных условиях.

Липиды

Органическим веществом является и жироподобное соединение. Липиды принадлежат к простейшим биологическим молекулам. Они нерастворимы в воде, но при этом распадаются в неполярных растворах, таких как бензин, эфир и хлороформ. Они входят в состав всех живых клеток. В химическом отношении липиды - это спиртов и карбоновых кислот. Самые известные из них - жиры. В организме животных и растений эти вещества выполняют множество важных функций. Многие липиды используются в медицине и промышленности.

Функции липидов

Эти органические химические вещества вместе с белками в клетках образуют биологические мембраны. Но главная их функция - энергетическая. При окислении молекул жиров высвобождается огромное количество энергии. Она идет на образование в клетках АТФ. В форме липидов в организме может накапливаться значительное количество энергетических запасов. Порою их даже больше, чем нужно для осуществления нормальной жизнедеятельности. При патологических изменениях метаболизма «жирных» клеток становится больше. Хотя справедливости ради нужно заметить, что такие чрезмерные запасы просто необходимы животным, впадающим в спячку, и растениям. Многие полагают, что деревья и кустарники в холодный период питаются за счет почв. В действительности же они расходуют запасы масел и жиров, которые сделали за летний период.

В организме человека и животных жиры могут выполнять и защитную функцию. Они откладываются в подкожной клетчатке и вокруг таких органов, как почки и кишечник. Таким образом, они служат хорошей защитой от механических повреждений, то есть ударов.

Кроме этого, жиры обладают низким уровнем теплопроводности, что помогает сохранить тепло. Это очень важно, особенно в условиях холодного климата. У морских животных подкожный жировой слой еще и способствует хорошей плавучести. А вот у птиц липиды выполняют еще и водоотталкивающую и смазывающую функции. Воск покрывает их перья и делает их более эластичными. Такой же налет имеют на листьях некоторые виды растений.

Углеводы

Формула органического вещества C n (H 2 O) m указывает на принадлежность соединения к классу углеводов. Название этих молекул указывает на тот факт, что в них присутствует кислород и водород в том же количестве, что и вода. Кроме этих химических элементов, в соединениях может присутствовать, например, азот.

Углеводы в клетке являются основной группой органических соединений. Это первичные продукты Они представляют собой и исходные продукты синтеза в растениях других веществ, например, спиртов, органических кислот и аминокислот. Также углеводы входят в состав клеток животных и грибов. Обнаруживаются они и среди основных компонентов бактерий и простейших. Так, в животной клетке их от 1 до 2 %, а в растительной их количество может достигать 90 %.

На сегодняшний день выделяют всего три группы углеводов:

Простые сахара (моносахариды);

Олигосахариды, состоящие из нескольких молекул последовательно соединенных простых сахаров;

Полисахариды, в их состав входит более 10 молекул моносахаридов и их производных.

Функции углеводов

Все органические вещества в клетке выполняют определенные функции. Так, например, глюкоза - это основной энергетический источник. Она расщепляется в клетках всех происходит во время клеточного дыхания. Гликоген и крахмал составляют основной запас энергии, причем первое вещество у животных, а второе - у растений.

Углеводы выполняют и структурную функцию. Целлюлоза является основным компонентом клеточной стенки растений. А у членистоногих эту же функцию выполняет хитин. Также он обнаруживается в клетках высших грибов. Если брать в пример олигосахариды, то они входят в состав цитоплазматической мембраны - в виде гликолипидов и гликопротеинов. Также в клетках нередко выявляется гликокаликс. В синтезе нуклеиновых кислот участвуют пентозы. При включена в состав ДНК, а рибоза - в РНК. Также эти компоненты обнаруживаются и в коферментах, например, в ФАД, НАДФ и НАД.

Углеводы также способны выполнять в организме и защитную функцию. У животных вещество гепарин активно препятствует быстрому свертыванию крови. Он образуется во время повреждения ткани и блокирует образование тромбов в сосудах. Гепарин в большом количестве обнаруживается в тучных клетках в гранулах.

Нуклеиновые кислоты

Белки, углеводы и липиды - это не все известные классы органических веществ. Химия относит сюда еще и нуклеиновые кислоты. Это фосфорсодержащие биополимеры. Они, находясь в клеточном ядре и цитоплазме всех живых существ, обеспечивают передачу и хранение генетических данных. Эти вещества были открыты благодаря биохимику Ф. Мишеру, который занимался изучением сперматозоидов лосося. Это было «случайное» открытие. Немного позднее РНК и ДНК были обнаружены и во всех растительных и животных организмах. Также были выделены нуклеиновые кислоты в клетках грибов и бактерий, а также вирусов.

Всего в природе обнаружено два вида нуклеокислот - рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК). Различие понятно из названия. дезоксирибоза - пятиуглеродный сахар. А в молекуле РНК обнаруживается рибоза.

Изучением нуклеиновых кислот занимается органическая химия. Темы для исследования диктует также медицина. В кодах ДНК скрывается множество генетических болезней, обнаружить которые ученым еще только предстоит.

В прошлом ученые разделяли все вещества в природе на условно неживые и живые, включая в число последних царство животных и растений. Вещества первой группы получили название минеральных. А те, что вошли во вторую, стали называть органическими веществами.

Что под этим подразумевается? Класс органических веществ наиболее обширный среди всех химических соединений, известных современным ученым. На вопрос, какие вещества органические, можно ответить так – это химические соединения, в состав которых входит углерод.

Обратите внимание, что не все углеродсодержащие соединения относятся к органическим. Например, корбиды и карбонаты, угольная кислота и цианиды, оксиды углерода не входят в их число.

Почему органических веществ так много?

Ответ на этот вопрос кроется в свойствах углерода. Этот элемент любопытен тем, что способен образовывать цепочки из своих атомов. И при этом углеродная связь очень стабильная.

Кроме того, в органических соединениях он проявляет высокую валентность (IV), т.е. способность образовывать химические связи с другими веществами. И не только одинарные, но также двойные и даже тройные (иначе – кратные). По мере возрастания кратности связи цепочка атомов становится короче, а стабильность связи повышается.

А еще углерод наделен способностью образовывать линейные, плоские и объемные структуры.

Именно поэтому органические вещества в природе так разнообразны. Вы легко проверите это сами: встаньте перед зеркалом и внимательно посмотрите на свое отражение. Каждый из нас – ходячее пособие по органической химии. Вдумайтесь: не меньше 30% массы каждой вашей клетки – это органические соединения. Белки, которые построили ваше тело. Углеводы, которые служат «топливом» и источником энергии. Жиры, которые хранят запасы энергии. Гормоны, которые управляют работой органов и даже вашим поведением. Ферменты, запускающие химические реакции внутри вас. И даже «исходный код», цепочки ДНК – все это органические соединения на основе углерода.

Состав органических веществ

Как мы уже говорили в самом начале, основной строительный материал для органических веществ – это углерод. И практические любые элементы, соединяясь с углеродом, могут образовывать органические соединения.

В природе чаще всего в составе органических веществ присутствуют водород, кислород, азот, сера и фосфор.

Строение органических веществ

Многообразие органических веществ на планете и разнообразие их строения можно объяснить характерными особенностями атомов углерода.

Вы помните, что атомы углерода способны образовывать очень прочные связи друг с другом, соединяясь в цепочки. В результате получаются устойчивые молекулы. То, как именно атомы углерода соединяются в цепь (располагаются зигзагом), является одной из ключевых особенностей ее строения. Углерод может объединяться как в открытые цепи, так и в замкнутые (циклические) цепочки.

Важно и то, что строение химических веществ прямо влияет на их химические свойства. Значительную роль играет и то, как атомы и группы атомов в молекуле влияют друг на друга.

Благодаря особенностям строения, счет однотипным соединениям углерода идет на десятки и сотни. Для примера можно рассмотреть водородные соединения углерода: метан, этан, пропан, бутан и т.п.

Например, метан – СН 4 . Такое соединение водорода с углеродом в нормальных условиях пребывает в газообразном агрегатном состоянии. Когда же в составе появляется кислород, образуется жидкость – метиловый спирт СН 3 ОН.

Не только вещества с разным качественным составом (как в примере выше) проявляют разные свойства, но и вещества одинакового качественного состава тоже на такое способны. Примером могут служить различная способность метана СН 4 и этилена С 2 Н 4 реагировать с бромом и хлором. Метан способен на такие реакции только при нагревании или под ультрафиолетом. А этилен реагирует даже без освещения и нагревания.

Рассмотрим и такой вариант: качественный состав химических соединений одинаков, количественный – отличается. Тогда и химические свойства соединений различны. Как в случае с ацетиленом С 2 Н 2 и бензолом С 6 Н 6 .

Не последнюю роль в этом многообразии играют такие свойства органических веществ, «завязанные» на их строении, как изомерия и гомология.

Представьте, что у вас есть два на первый взгляд идентичных вещества – одинаковый состав и одна и та же молекулярная формула, чтобы описать их. Но строение этих веществ принципиально различно, откуда вытекает и различие химических и физических свойств. К примеру, молекулярной формулой С 4 Н 10 можно записать два различных вещества: бутан и изобутан.

Речь идет об изомерах – соединениях, которые имеют одинаковый состав и молекулярную массу. Но атомы в их молекулах расположены в различном порядке (разветвленное и неразветвленное строение).

Что касается гомологии – это характеристика такой углеродной цепи, в которой каждый следующий член может быть получен прибавлением к предыдущему одной группы СН 2 . Каждый гомологический ряд можно выразить одной общей формулой. А зная формулу, несложно определить состав любого из членов ряда. Например, гомологи метана описываются формулой C n H 2n+2 .

По мере прибавления «гомологической разницы» СН 2 , усиливается связь между атомами вещества. Возьмем гомологический ряд метана: четыре первых его члена – газы (метан, этан, пропан, бутан), следующие шесть – жидкости (пентан, гексан, гептан, октан, нонан, декан), а дальше следуют вещества в твердом агрегатном состоянии (пентадекан, эйкозан и т.д.). И чем прочнее связь между атомами углерода, тем выше молекулярный вес, температуры кипения и плавления веществ.

Какие классы органических веществ существуют?

К органическим веществам биологического происхождения относятся:

  • белки;
  • углеводы;
  • нуклеиновые кислоты;
  • липиды.

Три первых пункта можно еще назвать биологическими полимерами.

Более подробная классификация органических химических веществ охватывает вещества не только биологического происхождения.

К углеводородам относятся:

  • ациклические соединения:
    • предельные углеводороды (алканы);
    • непредельные углеводороды:
      • алкены;
      • алкины;
      • алкадиены.
  • циклические соединения:
    • соединения карбоциклические:
      • алициклические;
      • ароматические.
    • соединения гетероциклические.

Есть также иные классы органических соединений, в составе которых углерод соединяется с другими веществами, кроме водорода:

    • спирты и фенолы;
    • альдегиды и кетоны;
    • карбоновые кислоты;
    • сложные эфиры;
    • липиды;
    • углеводы:
      • моносахариды;
      • олигосахариды;
      • полисахариды.
      • мукополисахариды.
    • амины;
    • аминокислоты;
    • белки;
    • нуклеиновые кислоты.

Формулы органических веществ по классам

Примеры органических веществ

Как вы помните, в человеческом организме различного рода органические вещества – основа основ. Это наши ткани и жидкости, гормоны и пигменты, ферменты и АТФ, а также многое другое.

В телах людей и животных приоритет за белками и жирами (половина сухой массы клетки животных это белки). У растений (примерно 80% сухой массы клетки) – за углеводами, в первую очередь сложными – полисахаридами. В том числе за целлюлозой (без которой не было бы бумаги), крахмалом.

Давайте поговорим про некоторые из них подробнее.

Например, про углеводы . Если бы можно было взять и измерить массы всех органических веществ на планете, именно углеводы победили бы в этом соревновании.

Они служат в организме источником энергии, являются строительными материалами для клеток, а также осуществляют запас веществ. Растениям для этой цели служит крахмал, животным – гликоген.

Кроме того, углеводы очень разнообразны. Например, простые углеводы. Самые распространенные в природе моносахариды – это пентозы (в том числе входящая в состав ДНК дезоксирибоза) и гексозы (хорошо знакомая вам глюкоза).

Как из кирпичиков, на большой стройке природы выстраиваются из тысяч и тысяч моносахаридов полисахариды. Без них, точнее, без целлюлозы, крахмала, не было бы растений. Да и животным без гликогена, лактозы и хитина пришлось бы трудно.

Посмотрим внимательно и на белки . Природа самый великий мастер мозаик и пазлов: всего из 20 аминокислот в человеческом организме образуется 5 миллионов типов белков. На белках тоже лежит немало жизненно важных функций. Например, строительство, регуляция процессов в организме, свертывание крови (для этого существуют отдельные белки), движение, транспорт некоторых веществ в организме, они также являются источником энергии, в виде ферментов выступают катализатором реакций, обеспечивают защиту. В деле защиты организма от негативных внешних воздействий важную роль играют антитела. И если в тонкой настройке организма происходит разлад, антитела вместо уничтожения внешних врагов могут выступать агрессорами к собственным органам и тканям организма.

Белки также делятся на простые (протеины) и сложные (протеиды). И обладают присущими только им свойствами: денатурацией (разрушением, которое вы не раз замечали, когда варили яйцо вкрутую) и ренатурацией (это свойство нашло широкое применение в изготовлении антибиотиков, пищевых концентратов и др.).

Не обойдем вниманием и липиды (жиры). В нашем организме они служат запасным источником энергии. В качестве растворителей помогают протеканию биохимических реакций. Участвуют в строительстве организма – например, в формировании клеточных мембран.

И еще пару слов о таких любопытных органических соединениях, как гормоны . Они участвуют в биохимических реакциях и обмене веществ. Такие маленькие, гормоны делают мужчин мужчинами (тестостерон) и женщин женщинами (эстроген). Заставляют нас радоваться или печалиться (не последнюю роль в перепадах настроения играют гормоны щитовидной железы, а эндорфин дарит ощущение счастья). И даже определяют, «совы» мы или «жаворонки». Готовы вы учиться допоздна или предпочитаете встать пораньше и сделать домашнюю работу перед школой, решает не только ваш распорядок дня, но и некоторые гормоны надпочечников.

Заключение

Мир органических веществ по-настоящему удивительный. Достаточно углубиться в его изучение лишь немного, чтобы у вас захватило дух от ощущения родства со всем живым на Земле. Две ноги, четыре или корни вместо ног – всех нас объединяет волшебство химической лаборатории матушки-природы. Оно заставляет атомы углерода объединяться в цепочки, вступать в реакции и создавать тысячи таких разнообразных химических соединений.

Теперь у вас есть краткий путеводитель по органической химии. Конечно, здесь представлена далеко не вся возможная информация. Какие-то моменты вам, быть может, придется уточнить самостоятельно. Но вы всегда можете использовать намеченный нами маршрут для своих самостоятельных изысканий.

Вы также можете использовать приведенное в статье определение органического вещества, классификацию и общие формулы органических соединений и общие сведения о них, чтобы подготовиться к урокам химии в школе.

Расскажите нам в комментариях, какой раздел химии (органическая или неорганическая) нравится вам больше и почему. Не забудьте «расшарить» статью в социальных сетях, чтобы ваши одноклассники тоже смогли ею воспользоваться.

Пожалуйста, сообщите, если обнаружите в статье какую-то неточность или ошибку. Все мы люди и все мы иногда ошибаемся.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

В настоящее время известно более 10 млн органических соединений. Такое громадное количество соединений требует строгой классификации и единых международных номенклатурных правил. Этому вопросу уделяется особое внимание в связи с использованием компьютерных технологий для создания разнообразных баз данных.

1.1. Классификация

Строение органических соединений описывается с помощью структурных формул.

Структурной формулой называют изображение последовательности связывания атомов в молекуле при помощи химических символов.

С понятием последовательности соединения атомов в молекуле непосредственно связано явление изомерии, т. е. существования соединений одинакового состава, но различного химического стро- ения, называемых структурными изомерами (изомеры строения). Важнейшей характеристикой большинства неорганических соединений служит состав, выражаемый молекулярной формулой, например хлороводородная кислота HC1, серная кислота H 2 SO 4. Для органи- ческих соединений состав и соответственно молекулярная формула не являются однозначными характеристиками, так как одному и тому же составу может соответствовать много реально существующих соединений. Например, структурные изомеры бутан и изобутан, имея одинаковую молекулярную формулу С 4 Н 10, различаются последовательностью связывания атомов и имеют разные физико-химические характеристики.

Первым классификационным критерием служит деление органических соединений на группы с учетом строения углеродного скелета (схема 1.1).

Схема 1.1. Классификация органических соединений по строению углеродного скелета

Ациклические соединения - это соединения с незамкнутой цепью атомов углерода.

Алифатические (от греч. a leiphar - жир) углеводороды - простейшие представители ациклических соединений - содержат только атомы углерода и водорода и могут быть насыщенными (алканы) и ненасыщенными (алкены, алкадиены, алкины). Их структурные формулы часто записывают в сокращенном (сжатом) виде, как показано на примере н -пентана и 2,3-диметилбутана. При этом обозначение одинарных связей опускают, а одинаковые группы заключают в скобки и указывают число этих групп.

Углеродная цепь может быть неразветвленной (например, в н-пентане) и разветвленной (например, в 2,3-диметилбутане и изопрене).

Циклические соединения - это соединения с замкнутой цепью атомов.

В зависимости от природы атомов, составляющих цикл, различают карбоциклические и гетероциклические соединения.

Карбоциклические соединения содержат в цикле только атомы углерода и делятся на ароматические и алициклические (циклические неароматические). Число атомов углерода в циклах может быть различным. Известны большие циклы (макроциклы), состоящие из 30 атомов углерода и более.

Для изображения циклических структур удобны скелетные формулы, в которых опускают символы атомов углерода и водорода, но символы остальных элементов (N, O, S и др.) указывают. В таких

формулах каждый угол многоугольника означает атом углерода с необходимым числом атомов водорода (с учетом четырехвалентности атома углерода).

Родоначальником ароматических углеводородов (аренов) является бензол. Нафталин, антрацен и фенантрен относятся к полициклическим аренам. Они содержат конденсированные бензольные кольца.

Гетероциклические соединения содержат в цикле, кроме атомов углерода, один или несколько атомов других элементов - гетероатомов (от греч. heteros - другой, иной): азот, кислород, серу и др.

Большое многообразие органических соединений можно рассматривать в целом как углеводороды или их производные, полученные путем введения в структуру углеводородов функциональных групп.

Функциональная группа - это гетероатом или группа атомов неуглеводородного характера, определяющие принадлежность соеди- нения к определенному классу и ответственных за его химические свойства.

Вторым, более существенным классификационным критерием, служит деление органических соединений на классы в зависимости от природы функциональных групп. Общие формулы и названия важнейших классов приведены в табл. 1.1.

Соединения с одной функциональной группой называют монофункциональными (например, этанол), с несколькими одинаковыми функциональными группами - полифункциональными (например,

Таблица 1.1. Важнейшие классы органических соединений

* К функциональным группам иногда причисляют двойную и тройную связи.

** Применяемое иногда название тиоэфиры использовать не следует, так как оно

относится к серосодержащим сложным эфирам (см. 6.4.2).

глицерин), с несколькими разными функциональными группами - гетерофункциональными (например, коламин).

Соединения каждого класса составляют гомологический ряд, т. е. группу родственных соединений с однотипной структурой, каждый последующий член которого отличается от предыдущего на гомологическую разность СН 2 в составе углеводородного радикала. Например, ближайшими гомологами являются этан С 2 Н 6 и пропан С з Н 8 , метанол

СН 3 ОН и этанол СН 3 СН 2 ОН, пропановая СН 3 СН 2 СООН и бутановая СН 3 СН 2 СН 2 СООН кислоты. Гомологи обладают близкими химическими свойствами и закономерно изменяющимися физическими свойствами.

1.2. Номенклатура

Номенклатура представляет собой систему правил, позволяющих дать однозначное название каждому индивидуальному соединению. Для медицины знание общих правил номенклатуры имеет особенно большое значение, так как в соответствии с ними строятся названия многочисленных лекарственных средств.

В настоящее время общепринята систематическая номенклатура ИЮПАК (IUPAC - Международный союз теоретической и прикладной химии)*.

Однако до сих пор сохраняются и широко применяются (особенно в медицине) тривиальные (обыденные) и полутривиальные названия, использовавшиеся еще до того, как становилось известным строение вещества. В этих названиях могут отражаться природные источники и способы получения, особо заметные свойства и области применения. Например, лактоза (молочный сахар) выделена из молока (от лат. lactum - молоко), пальмитиновая кислота - из пальмового масла, пировиноградная кислота получена при пиролизе виноградной кислоты, в названии глицерина отражен его сладкий вкус (от греч. glykys - сладкий).

Тривиальные названия особенно часто имеют природные соединения - аминокислоты, углеводы, алкалоиды, стероиды. Употребление некоторых укоренившихся тривиальных и полутривиальных названий разрешается правилами ИЮПАК. К таким названиям относятся, например, «глицерин» и названия многих широко известных ароматических углеводородов и их производных.

* Номенклатурные правила ИЮПАК по химии. Т. 2. - Органическая химия/пер. с англ. - М.: ВИНИТИ, 1979. - 896 с.; Хлебников А.Ф., Новиков М.С. Современная номенклатура органических соединений, или Как правильно называть органические вещества. - СПб.: НПО «Профессионал», 2004. - 431 с.

В тривиальных названиях дизамещенных производных бензола взаимное расположение заместителей в кольце обозначается префиксами орто- (о-) - для групп, находящихся рядом, мета- (м-) - через один атом углерода и пара- (п-) - напротив. Например:

Для использования систематической номенклатуры ИЮПАК необходимо знать содержание следующих номенклатурных терминов:

Органический радикал;

Родоначальная структура;

Характеристическая группа;

Заместитель;

Локант.

Органический радикал* - остаток молекулы, из которой удаляются один или несколько атомов водорода и при этом остаются свободными одна или несколько валентностей.

Углеводородные радикалы алифатического ряда имеют общее название - алкилы (в общих формулах обозначаются R), радикалы ароматического ряда - арилы (Ar). Два первых представителя алканов - метан и этан - образуют одновалентные радикалы метил СН 3 - и этил СН 3 СН 2 -. Названия одновалентных радикалов обычно образуются при замене суффикса -ан суффиксом -ил.

Атом углерода, связанный только с одним атомом углерода (т. е. концевой), называют первичным, с двумя - вторичным, с тремя - третичным, с четырьмя - четвертичным.

* Этот термин не следует путать с термином «свободный радикал», который характеризует атом или группу атомов с неспаренным электроном.

Каждый последующий гомолог из-за неравноценности атомов углерода образует несколько радикалов. При удалении атома водорода от концевого атома углерода пропана получают радикал н -пропил (нормальный пропил), а от вторичного атома углерода - радикал изопропил. Бутан и изобутан каждый образуют по два радикала. Буква н- (которую разрешается опускать) перед названием радикала указывает, что свободная валентность находится на конце неразветвленной цепи. Префикс втор- (вторичный) означает, что свободная валентность находится у вторичного атома углерода, а префикс трет- (третичный) - у третичного.

Родоначальная структура - химическая структура, составляющая основу называемого соединения. В ациклических соединениях в качестве родоначальной структуры рассматривается главная цепь атомов углерода, в карбоциклических и гетероциклических соединениях - цикл.

Характеристическая группа - функциональная группа, связанная с родоначальной структурой или частично входящая в ее состав.

Заместитель - любой атом или группа атомов, замещающие в ор- ганическом соединении атом водорода.

Локант (от лат. locus - место) цифра или буква, указывающая положение заместителя или кратной связи.

Наиболее широко применяются два вида номенклатуры: заместительная и радикально-функциональная.

1.2.1. Заместительная номенклатура

Общая конструкция названия по заместительной номенклатуре представлена на схеме 1.2.

Схема 1.2. Общая конструкция названия соединения по заместительной номенклатуре

Название органического соединения представляет собой сложное слово, включающее название родоначальной структуры (корень) и названия разного типа заместителей (в виде префиксов и суффиксов), отражающих их природу, местонахождение и число. Отсюда и название этой номенклатуры - заместительная.

Заместители подразделяются на два типа:

Углеводородные радикалы и характеристические группы, обозначаемые только префиксами (табл. 1.2);

Характеристические группы, обозначаемые как префиксами, так и суффиксами в зависимости от старшинства (табл. 1.3).

Для составления названия органического соединения по заместительной номенклатуре используют приводимую ниже последовательность правил.

Таблица 1.2. Некоторые характеристические группы, обозначаемые только префиксами

Таблица 1.3. Префиксы и суффиксы, применяемые для обозначения важнейших характеристических групп

* Атом углерода, отмеченный цветом, включается в состав родоначальной структуры.

** Большинство фенолов имеет тривиальные названия.

Правило 1. Выбор старшей характеристической группы. Выявляют все имеющиеся заместители. Среди характеристических групп определяют старшую группу (если она присутствует), используя шкалу старшинства (см. табл. 1.3).

Правило 2. Определение родоначальной структуры. В качестве родо- начальной структуры в ациклических соединениях используют главную цепь атомов углерода, а в карбоциклических и гетероциклических соединениях - основную циклическую структуру.

Главную цепь атомов углерода в ациклических соединениях выбирают по приведенным ниже критериям, причем каждый последую- щий критерий используют, если предыдущий не приводит к однозначному результату:

Максимальное число характеристических групп, обозначаемых как префиксами, так и суффиксами;

Максимальное число кратных связей;

Максимальная длина цепи атомов углерода;

Максимальное число характеристических групп, обозначаемых только префиксами.

Правило 3. Нумерация родоначальной структуры. Родоначальную структуру нумеруют так, чтобы старшая характеристическая группа получила наименьший локант. Если выбор нумерации неоднозначен, то применяют правило наименьших локантов, т. е. нумеруют так, чтобы заместители получили наименьшие номера.

Правило 4. Название блока родоначальной структуры со старшей характеристической группой. В названии родоначальной структуры степень насыщенности отражают суффиксами: -ан в случае насыщенного углеродного скелета, -ен - при наличии двойной и -ин - тройной связи. К названию родоначальной структуры присоединяют суффикс, обозначающий старшую характеристическую группу.

Правило 5. Названия заместителей (кроме старшей характеристической группы). Дают название заместителям, обозначаемым префиксами в алфавитном порядке. Положение каждого заместителя и каждой кратной связи указывают цифрами, соответствующими номеру атома углерода, с которым связан заместитель (для кратной связи указывают только наименьший номер).

В русской терминологии цифры ставят перед префиксами и после суффиксов, например, 2-аминоэтанол H 2 NCH 2 CH 2 OH, бутадиен-1,3

СН 2 =СН-СН=СН 2 , пропанол-1 СН 3 СН 2 СН 2 ОН.

Для иллюстрации этих правил ниже приведены примеры построения названий ряда соединений в соответствии с общей схемой 1.2. В каждом случае отмечены особенности строения и способ их отражения в названии.

Схема 1.3. Построение систематического названия фторотана

2- бромо-1,1,1-трифторо-2-хлороэтан (средство для ингаляционного наркоза)

При наличии в соединении нескольких одинаковых заместителей при одном и том же атоме углерода локант повторяют столько раз, сколько имеется заместителей, с добавлением соответствующего умножающего префикса (схема 1.3). Заместители перечисляют по алфавиту, причем умножающий префикс (в данном примере - три-) в алфавитном порядке не учитывают. Схема 1.4. Построение систематического названия цитраля

После суффикса -аль, как и для сочетания -овая кислота, можно не указывать положение характеристических групп, так как они всегда находятся в начале цепи (схема 1.4). Двойные связи отражают суффиксом -диен с соответствующими локантами в названии родоначальной структуры.

Суффиксом обозначают старшую из трех характеристических групп (схема 1.5); остальные заместители, включая нестаршие характеристические группы, перечисляют по алфавиту как префиксы.

Схема 1.5. Построение систематического названия пеницилламина

Схема 1.6. Построение систематического названия щавелевоуксусной кислоты

оксобутандиовая кислота (продукт углеводного обмена)

Умножающий префикс ди- перед сочетанием -овая кислота указывает на наличие двух старших характеристических групп (схема 1.6). Локант перед оксо- опущен, так как иное положение оксогруппы соответствует той же структуре.

Схема 1.7. Построение систематического названия ментола

Нумерацию в цикле ведут от атома углерода, с которым связана старшая характеристическая группа (ОН) (схема 1.7), несмотря на то, что наименьший набор локантов всех заместителей в кольце может быть 1,2,4-, а не 1,2,5- (как в рассматриваемом примере).

Схема 1.8. Построение систематического названия пиридоксаля

I Заместители: ГВДРОКСИМЕТИЛ,ГИДРОКСИ, МЕТИЛ I

Альдегидную группу, атом углерода которой не включен в родоначальную структуру (схема 1.8), обозначают суффиксом -карбаль- дегид (см. табл. 1.3). Группу -СН 2 ОН рассматривают как составной заместитель и называют «гидроксиметил», т. е. метил, в котором в свою очередь произведено замещение атома водорода гидроксильной группой. Другие примеры составных заместителей: диметиламино- (CH 3) 2 N-, этокси- (сокращение от этилокси) С 2 Н 5 О-.

1.2.2. Радикально-функциональная номенклатура

Радикально-функциональная номенклатура используется реже, чем заместительная. В основном она применяется для таких классов органических соединений, как спирты, амины, простые эфиры, сульфиды и некоторых других.

Для соединений с одной функциональной группой общее название включает название углеводородного радикала, а наличие функцио- нальной группы отражают опосредованно через название соответствующего класса соединений, принятого в этом виде номенклатуры (табл. 1.4).

Таблица 1.4. Названия классов соединений, используемые в радикальнофункциональной номенклатуре*

1.2.3. Построение структуры по систематическому названию

Изображение структуры по систематическому названию представляется обычно более легкой задачей. Сначала записывают родо- начальную структуру - открытую цепь или цикл, затем нумеруют атомы углерода и расставляют заместители. В заключение дописывают атомы водорода с условием, чтобы каждый атом углерода оказался четырехвалентным.

В качестве примера приводится построение структур лекарственного средства ПАСК (сокращение от пара-аминосалициловой кислоты, систематическое название - 4-амино-2-гидроксибензойная кислота) и лимонной (2-гидроксипропан-1,2,3-трикарбоновой) кислоты.

4-Амино-2-гидроксибензойная кислота

Родоначальная структура - тривиальное название цикла со старшей характеристической

группой (СООН):

Расстановка заместителей - группа у атома С-4 и группа ОН у атома С-2:

2-Гидроксипропан-1,2,3-трикарбоновая кислота

Главная углеродная цепь и нумерация:

Расстановка заместителей - три группы СООН (-трикарбоновая кислота) и группа ОН у атома С-2:

Дополнение атомами водорода:


Следует заметить, что в систематическом названии лимонной кислоты в качестве родоначальной структуры выбран пропан, а не более длинная цепь - пентан, так как в пятиуглеродную цепь невозможно включить атомы углерода всех карбоксильных групп.

Название класса соединений Общая формула
Алканы С n H 2 n +2
Алкены, циклоалканы С n H 2 n
Алкины, алкадиены, циклоалкены С n H 2 n -2
Одноатомные спирты, простые эфиры С n H 2n+1 OH
Двухатомные спирты С n H 2n (OH) 2
Трехатомные спирты С n H 2n-1 (OH) 3
Альдегиды (предельные), кетоны С n H 2n+1 CHO
Одноосновные карбоновые кислоты, сложные эфиры С n H 2n+1 COOH
Двухосновные карбоновые кислоты С n H 2n (COOH) 2
Амины С n H 2n+1 NH 2
Нитросоединения С n H 2n+1 NO 2
Аминокислоты С n H 2n NH 2 COOH
Ароматические углеводороды, гомологи бензола С n H 2n-6
Ароматические одноатомные спирты С n H 2n-7 OH
Ароматические двухатомные спирты С n H 2n-8 (OH) 2
Ароматические альдегиды С n H 2n-7 CHO
Ароматические одноосновные кислоты С n H 2n-7 COOH

Алгоритм составления формул изомеров алканов

1. Определите число атомов углерода по корню названия углеводорода.

2. Изобразите схему нормальной углеродной цепи и пронумеруйте в ней атомы углерода.

3. Изобразите схему пронумерованной углеродной цепи изомеров, которых по сравнению с нормальной цепью на один атом углерода меньше, этот атом углерода присоедините во всевозможных положениях к атомам углерода пронумерованной главной цепи, кроме крайних.

4. Составьте схему пронумерованной углеродной цепи изомеров, в которых по сравнению с нормальной цепью на два атома углерода меньше; эти два атома углерода присоедините всевозможных положениях к атомам углерода пронумерованной главной цепи, кроме крайних.

5. Впишите атомы водорода с учетом недостающих единиц валентности у атомов углерода в схемах углеродной цепи (валентность углерода – IV).

6. Количество атомов углерода и водорода в углеродной цепи изомеров не должно меняться.

Алгоритм составления формул углеводородов по их названию

1. Определите число атомов углерода в молекуле по корню названия углеводорода.

2. Изобразите углеродную цепь в соответствии с числом атомов углерода в молекуле.

3. Пронумеруйте углеродную цепь.

4. Установите наличие соответствующей углеродной связи в молекуле по суффиксу названия углеводорода, изобразите эту связь в углеродной цепи.

5. Подставьте радикалы в соответствии с номерами атомов углерода в цепи.

6. Обозначьте черточками недостающие валентности у атомов углерода.

7. Впишите недостающие атомы водорода.

8. Представьте структурную формулу в сокращенной записи.

Названия некоторых органических веществ

Химическая формула Систематическое название вещества Тривиальное название вещества
СH 2 Cl 2 Дихлорметан Хлористый метилен
CHCl 3 Трихлорметан Хлороформ
CCl 4 Тетрахлорметан Четыреххлористый углерод
C 2 H 2 Этин Ацетилен
C 6 H 4 (CH 3) 2 Диметилбензол Ксилол
C 6 H 5 CH 3 Метилбензол Толуол
C 6 H 5 NH 2 Аминобензол Анилин
C 6 H 5 OH Гидроксибензол Фенол, карболовая кислота
C 6 H 2 CH 3 (NO 2) 3 2,4,6-тринитротолуол Тол, тротил
С 6 Н 3 (ОН) 3 1,2,3 - тригидроксибензол Пирогаллол
С 6 Н 4 (ОН) 2 1,3 - дигидроксибензол Резорцин
С 6 Н 4 (ОН) 2 1,2- дигидроксибензол Пирокатехин
С 6 Н 4 (ОН) 2 1,4 - дигидроксибензол Гидрохинон
C 6 H 2 OH(NO 2) 3 2,4,6- тринитрофенол Пикриновая кислота
C 3 H 5 (OH) 3 Пропантриол -1,2,3 Глицерин
C 2 H 4 (OH) 2 Этандиол – 1,2 Этиленгликоль
C 6 H 5 CH 2 OH Фенилметанол Бензиловый спирт
С 6 H 8 (OH) 6 Гексангексаол-1,2,3,4,5,6 Сорбит
C 3 H 6 O Прапанон Ацетон
CH 3 OH Метанол (метиловый спирт) Древесный спирт
СН 2 О Метаналь Формальдегид
С 2 Н 4 О Этаналь Уксусный альдегид, ацетальальдегид
С 3 Н 6 О Пропаналь Пропионовый альдегид
С 3 Н 4 О Пропеналь Акролеин
С 6 Н 5 СОН Бензальдегид Бензойный альдегид
С 4 Н 8 О Бутаналь Масляный альдегид
С 5 Н 10 О Пентаналь Валериановый альдегид
НСООН Метановая кислота Муравьиная кислота(соль - формиат)
СН 3 СООН Этановая кислота Уксусная кислота(соль – ацетат)
С 2 Н 5 СООН Пропановая кислота Пропионовая кислота
С 3 Н 7 СООН Бутановая кислота Масляная кислота
С 4 Н 9 СООН Пентановая кислота Валериановая кислота
С 5 Н 11 СООН Гексановая кислота Капроновая кислота
С 6 Н 13 СООН Гептановая кислота Энантовая кислота
С 7 Н 15 СООН Октановая кислота Каприловая кислота
С 8 Н 17 СООН Нонановая кислота Пеларголовая кислота
НООС - СООН Этандиовая кислота Щавелевая кислота(соль – оксалат)
НООС –СН 2 - СООН Пропандиовая кислота Малоновая кислота
НООС –(СН 2) 2 - СООН Бутандиовая кислота Янтарная кислота
С 17 Н 33 СООН(непред) Октадекеновая кислота Олеиновая кислота
С 15 Н 31 СООН(пред) Гексадекановая кислота Пальмитиновая кислота
С 17 Н 35 СООН(пред) Октадекановая кислота Стеариновая кислота(соль – стеарат)