Рассчитать тепловой эффект реакции в стандартных условиях. Расчет тепловых эффектов химических реакций

здесь и далее индексы i относятся к исходным веществам или реагентам, а индексыj – к конечным веществам или продуктам реакции; и – стехиометрические коэффициенты в уравнении реакции для исходных веществ и продуктов реакции, соответственно.

Пример: Рассчитаем тепловой эффект реакции синтеза метанола при стандартных условиях.

Решение: Для расчетов воспользуемся справочными данными по стандартным теплотам образования, участвующих в реакции веществ (см. табл. 44 на стр.72 справочника ).

Тепловой эффект реакции синтеза метанола в стандартных условиях по первому следствию из закона Гесса (уравнение 1.15) равен:

При расчете тепловых эффектов химических реакции нужно учитывать, что тепловой эффект зависит от агрегатного состояния реагентов и от вида записи химического уравнения реакции:

По второму следствию из закона Гесса тепловой эффект можно рассчитать, используя теплоты сгорания Δ c H , как разность сумм теплот сгорания исходных веществ и продуктов реакции (с учетом стехиометрических коэффициентов):

где Δ r C p – характеризует изменение изобарной теплоемкости системы в результате протекания химической реакции и называется температурным коэффициентом теплового эффекта реакции.

Из дифференциального уравнения Кирхгоффа следует, что зависимость теплового эффекта от температуры определяется знаком Δ r C p , т.е. зависит от того, что больше, суммарная теплоемкость исходных веществ или суммарная теплоемкость продуктов реакции. Проанализируем дифференциальное уравнение Кирхгофа.



1. Если температурный коэффициент Δ r C p > 0, то производная > 0 и функция возрастающая. Следовательно, тепловой эффект реакции с ростом температуры увеличивается.

2. Если температурный коэффициент Δ r C p < 0, то производная < 0 и функция убывающая. Следовательно, тепловой эффект реакции с ростом температуры уменьшается.

3. Если температурный коэффициент Δ r C p = 0, то производная = 0 и . Следовательно, тепловой эффект реакции не зависит от температуры. Этот случай на практике не встречается.

Дифференциальные уравнения удобны для анализа, но неудобны для расчетов. Чтобы получить уравнение для расчета теплового эффекта химической реакции, проинтегрируем дифференциальное уравнение Кирхгофа, разделив переменные:

Теплоемкости веществ зависят от температуры, следовательно, и . Однако, в области обычно используемых в химико-технологических процессах температурах эта зависимость не значительна. Для практических целей пользуются средними теплоемкостями веществ в интервале температур от 298 К до заданной температуры , которые приводятся в справочниках. Температурный коэффициент теплового эффекта, рассчитанный с использованием средних теплоемкостей:

Пример: Рассчитаем тепловой эффект реакции синтеза метанола при температуре 1000 К и стандартном давлении.

Решение: Для расчетов воспользуемся справочными данными по средним теплоемкостям участвующих в реакции веществ в интервале температур от 298 К до 1000 К (см. табл. 40 на стр.56 справочника ):

Изменение средней теплоемкости системы в результате протекания химической реакции:

Второе начало термодинамики

Одной из важнейших задач химической термодинамики яв­ляется выяснение принципиальной возможности (или невоз­можности) самопроизвольного протекания химической реакции в рассматриваемом направлении. В тех случаях, когда стано­вится ясно, что данное химическое взаимодействие происходить может, необходимо определить степень превращения исходных веществ и выход продуктов реакции, то есть полноту протекания реакции

Направление протекания самопроизвольного процесса можно определить на основе второго закона или начала термодинамики, сформулированного, например, в виде постулата Клаузиуса:

Теплота сама собой не может переходить от холодного тела к горячему, т. е. невозможен такой процесс, единственным резуль­татом которого был бы переход теплоты от тела с более низкой температурой к телу с более высокой температурой.

Предложено множество формулировок второго начала термо­динамики. Формулировка Томсона - Планка:

Невозможен вечный двигатель второго рода, т. е. невозмож­на такая периодически действующая машина, которая бы позволяла получать работу только за счет охлаждения источника тепла.

Математическая формулировка второго начала термодинамики возникла при анализе работы тепловых машин в трудах Н. Карно и Р. Клаузиуса.

Клаузиусом была введена функция состояния S , названная энтропией, изменение которой равно теплоте обратимого процесса, отнесенной к температуре

Для любого процесса

(1.22)

Полученное выражение представляет собой математическое выражение второго начала термодинамики.

Стандартной теплотой образования (энтальпией образования) вещества называется энтальпия реакции образования 1 моля этого вещества из элементов (простых веществ, то есть состоящих из атомов одного вида), находящихся в наиболее устойчивом стандартном состоянии. Стандартные энтальпии образования веществ (кДж/моль) приводятся в справочниках. При использовании справочных значений необходимо обращать внимание на фазовое состояние веществ, участвующих в реакции. Энтальпия образования наиболее устойчивых простых веществ равна 0.

Следствие из закона Гесса о расчете тепловых эффектов химических реакций по теплотам образования : стандартный тепловой эффект химической реакции равен разности теплот образования продуктов реакции и теплот образования исходных веществ с учетом стехиометрических коэффициентов (количества молей) реагентов :

CH 4 + 2 CO = 3 C ( графит ) + 2 H 2 O.

газ газ тв. газ

Теплоты образования веществ в указанных фазовых состояниях приведены в табл. 1.2.

Таблица 1.2

Теплоты образования веществ

Р е ш е н и е

Так как реакция проходит при P = const, то стандартный тепловой эффект находим в виде изменения энтальпии по известным теплотам образования по следствию из закона Гесса (формула (1.17):

ΔН о 298 = { 2 · (–241,81) + 3·0} – {–74,85 + 2 · (–110,53)} = –187,71 кДж = = –187710 Дж.

ΔН о 298 < 0, реакция является экзотермической, протекает с выделением теплоты.

Изменение внутренней энергии находим на основании уравнения (1.16):

ΔU о 298 = ΔH о 298 Δ ν · RT .

Для данной реакции изменений числа молей газообразных веществ за счет прохождения химической реакции Δν = 2 – (1 + 2) = –1; Т = 298 К, тогда

Δ U о 298 = –187710 – (–1) · 8,314· 298 = –185232 Дж.

Расчет стандартнвх тепловых эффектов химических реакций по стандартным теплотам сгорания веществ, участвующих в реакции

Стандартной теплотой сгорания (энтальпией сгорания) вещества называется тепловой эффект полного окисления 1 моля данного вещества (до высших оксидов или специально указываемых соединений) кислородом при условии, что исходные и конечные вещества имеют стандартную температуру. Стандартные энтальпии сгорания веществ
(кДж/моль) приводятся в справочниках. При использовании справочной величины необходимо обратить внимание на знак величины энтальпии реакции сгорания, которая всегда является экзотермической (Δ H <0), а в таблицах указаны величины
.Энтальпии сгорания высших оксидов (например, воды и диоксида углерода) равны 0.

Следствие из закона Гесса о расчете тепловых эффектов химических реакций по теплотам сгорания : стандартный тепловой эффект химической реакции равен разности теплот сгорания исходных веществ и теплот сгорания продуктов реакции с учетом стехиометрических коэффициентов (количества молей) реагентов:

C 2 H 4 + H 2 O = С 2 Н 5 ОН.

Задание 81.
Вычислите количество теплоты, которое выделится при восстановлении Fe 2 O 3 металлическим алюминием, если было получено 335,1 г железа. Ответ: 2543,1 кДж.
Решение:
Уравнение реакции:

= (Al 2 O 3) - (Fe 2 O 3) = -1669,8 -(-822,1) = -847,7 кДж

Вычисление количества теплоты, которое выделяется при получении 335,1 г железа, про-изводим из пропорции:

(2 . 55,85) : -847,7 = 335,1 : х; х = (0847,7 . 335,1)/ (2 . 55,85) = 2543,1 кДж,

где 55,85 атомная масс железа.

Ответ: 2543,1 кДж.

Тепловой эффект реакции

Задание 82.
Газообразный этиловый спирт С2Н5ОН можно получить при взаимодействии этилена С 2 Н 4 (г) и водяных паров. Напишите термохимическое уравнение этой реакции, предварительно вычислив ее тепловой эффект. Ответ: -45,76 кДж.
Решение:
Уравнение реакции имеет вид:

С 2 Н 4 (г) + Н 2 О (г) = С2Н 5 ОН (г) ; = ?

Значения стандартных теплот образования веществ приведены в специальных таблицах. Учитывая, что теплоты образования простых веществ условно приняты равными нулю. Рассчитаем тепловой эффект реакции, используя следствие из закона Гесса, получим:

= (С 2 Н 5 ОН) – [ (С 2 Н 4) + (Н 2 О)] =
= -235,1 -[(52,28) + (-241,83)] = - 45,76 кДж

Уравнения реакций, в которых около символов химических соединений указываются их агрегатные состояния или кристаллическая модификация, а также числовое значение тепловых эффектов, называют термохимическими. В термохимических уравнениях, если это специально не оговорено, указываются значения тепловых эффектов при постоянном давлении Q p равные изменению энтальпии системы . Значение приводят обычно в правой части уравнения, отделяя его запятой или точкой c запятой. Приняты следующие сокращенные обозначения агрегатного состояния вещества: г - газообразное, ж - жидкое, к

Если в результате реакции выделяется теплота, то < О. Учитывая сказанное, составляем термохимическое уравнение данной в примере реакции:

С 2 Н 4 (г) + Н 2 О (г) = С 2 Н 5 ОН (г) ; = - 45,76 кДж.

Ответ: - 45,76 кДж.

Задание 83.
Вычислите тепловой эффект реакции восстановления оксида железа (II) водородом, исходя из следующих термохимических уравнений:

а) ЕеО (к) + СО (г) = Fe (к) + СO 2 (г); = -13,18 кДж;
б) СO (г) + 1/2O 2 (г) = СO 2 (г) ; = -283,0 кДж;
в) Н 2 (г) + 1/2O 2 (г) = Н 2 O (г) ; = -241,83 кДж.
Ответ: +27,99 кДж.

Решение:
Уравнение реакции восстановления оксида железа (II) водородом имеет вид:

ЕеО (к) + Н 2 (г) = Fe (к) + Н 2 О (г) ; = ?

= (Н2О) – [ (FeO)

Теплота образования воды определяется уравнением

Н 2 (г) + 1/2O 2 (г) = Н 2 O (г) ; = -241,83 кДж,

а теплоту образования оксида железа (II) можно вычислить, если из уравнения (б) вычесть уравнение (а).

=(в) - (б) - (а) = -241,83 – [-283,o – (-13,18)] = +27,99 кДж.

Ответ: +27,99 кДж.

Задание 84.
При взаимодействии газообразных сероводорода и диоксида углерода образуются пары воды и сероуглерод СS 2 (г) . Напишите термохимическое уравнение этой реакции, предварительно вычислите ее тепловой эффект. Ответ: +65,43 кДж.
Решение:
г - газообразное, ж - жидкое, к -- кристаллическое. Эти символы опускаются, если агрегатное состояние веществ очевидно, например, О 2 , Н 2 и др.
Уравнение реакции имеет вид:

2H 2 S (г) + CO 2 (г) = 2Н 2 О (г) + СS 2 (г); = ?

Значения стандартных теплот образования веществ приведены в специальных таблицах. Учитывая, что теплоты образования простых веществ условно приняты равными нулю. Тепловой эффект реакции можно вычислить, используя следствии е из закона Гесса:

= (Н 2 О) +(СS 2) – [(Н 2 S) + (СO 2)];
= 2(-241,83) + 115,28 – = +65,43 кДж.

2H 2 S (г) + CO 2 (г) = 2Н 2 О (г) + СS 2 (г) ; = +65,43 кДж.

Ответ: +65,43 кДж.

Tермохимическое уравнение реакции

Задание 85.
Напишите термохимическое уравнение реакции между СО (г) и водородом, в результате которой образуются СН 4 (г) и Н 2 О (г). Сколько теплоты выделится при этой реакции, если было получено 67,2 л метана в пересчете на нормальные условия? Ответ: 618,48 кДж.
Решение:
Уравнения реакций, в которых около символов химических соединений указываются их агрегатные состояния или кристаллическая модификация, а также числовое значение тепловых эффектов, называют термохимическими. В термохимических уравнениях, если это специально не оговорено, указываются значения тепловых эффектов при постоянном давлении Q p равные изменению энтальпии системы. Значение приводят обычно в правой части уравнения, отделяя его запятой или точкой c запятой. Приняты следующие сокращенные обозначения агрегатного состояния вещества: г - газообразное, ж - кое, к - кристаллическое. Эти символы опускаются, если агрегатное состояние веществ очевидно, например, О 2 , Н 2 и др.
Уравнение реакции имеет вид:

СО (г) + 3Н 2 (г) = СН 4 (г) + Н 2 О (г) ; = ?

Значения стандартных теплот образования веществ приведены в специальных таблицах. Учитывая, что теплоты образования простых веществ условно приняты равными нулю. Тепловой эффект реакции можно вычислить, используя следствии е из закона Гесса:

= (Н 2 О) + (СН 4) – (СO)];
= (-241,83) + (-74,84) – (-110,52) = -206,16 кДж.

Термохимическое уравнение будет иметь вид:

22,4 : -206,16 = 67,2 : х; х = 67,2 (-206,16)/22?4 = -618,48 кДж; Q = 618,48 кДж.

Ответ: 618,48 кДж.

Теплота образования

Задание 86.
Тепловой эффект какой реакции равен теплоте образования. Вычислите теплоту образования NO, исходя из следующих термохимических уравнений:
а) 4NH 3 (г) + 5О 2 (г) = 4NO (г) + 6Н 2 O (ж) ; = -1168,80 кДж;
б) 4NH 3 (г) + 3О 2 (г) = 2N 2 (г) + 6Н 2 O (ж); = -1530,28 кДж
Ответ: 90,37 кДж.
Решение:
Стандартная теплота образования равна теплоте реакции образования 1 моль этого вещества из простых веществ при стандартных условиях (Т = 298 К; р = 1,0325 . 105 Па). Образование NO из простых веществ можно представить так:

1/2N 2 + 1/2O 2 = NO

Дана реакция (а), в которой образуется 4 моль NO и дана реакция (б), в которой образуется 2 моль N2. В обеих реакциях участвует кислород. Следовательно, для определения стандартной теплоты образования NO составим следующий цикл Гесса, т. е. нужно вы-честь уравнение (а) из уравнения (б):

Таким образом, 1/2N 2 + 1/2O 2 = NO; = +90,37 кДж.

Ответ: 618,48 кДж.

Задание 87.
Кристаллический хлорид аммония образуется при взаимодействии газообразных аммиака и хлороводорода. Напишите термохимическое уравнение этой реакции, предварительно вычислив ее тепловой эффект. Сколько теплоты выделится, если в реакции было израсходовано 10 л аммиака в пересчете на нормальные условия? Ответ: 78,97 кДж.
Решение:
Уравнения реакций, в которых около символов химических соединений указываются их агрегатные состояния или кристаллическая модификация, а также числовое значение тепловых эффектов, называют термохимическими. В термохимических уравнениях, если это специально не оговорено, указываются значения тепловых эффектов при постоянном давлении Q p равные изменению энтальпии системы. Значение приводят обычно в правой части уравнения, отделяя его запятой или точкой c запятой. Приняты следующие кое, к -- кристаллическое. Эти символы опускаются, если агрегатное состояние веществ очевидно, например, О 2 , Н 2 и др.
Уравнение реакции имеет вид:

NH 3 (г) + НCl (г) = NH 4 Cl (к). ; = ?

Значения стандартных теплот образования веществ приведены в специальных таблицах. Учитывая, что теплоты образования простых веществ условно приняты равными нулю. Тепловой эффект реакции можно вычислить, используя следствии е из закона Гесса:

= (NH4Cl) – [(NH 3) + (HCl)];
= -315,39 – [-46,19 + (-92,31) = -176,85 кДж.

Термохимическое уравнение будет иметь вид:

Теплоту, выделившуюся при реакции 10 л аммиака по этой реакции, определим из про-порции:

22,4 : -176,85 = 10 : х; х = 10 (-176,85)/22,4 = -78,97 кДж; Q = 78,97 кДж.

Ответ: 78,97 кДж.

Термохимия изучает тепловые эффекты химических реакций. Во многих случаях эти реакции протекают при постоянном объеме или постоянном давлении. Из первого закона термодинамики следует, что при этих условиях теплота является функцией состояния. При постоянном объеме теплота равна изменению внутренней энергии:

а при постоянном давлении - изменению энтальпии:

Эти равенства в применении к химическим реакциям составляют суть закона Гесса :

Тепловой эффект химической реакции, протекающей при постоянном давлении или постоянном объеме, не зависит от пути реакции, а определяется только состоянием реагентов и продуктов реакции.

Другими словами, тепловой эффект химической реакции равен изменению функции состояния.
В термохимии, в отличие от других приложений термодинамики, теплота считается положительной, если она выделяется в окружающую среду, т.е. если H < 0 или U < 0. Под тепловым эффектом химической реакции понимают значение H (которое называют просто "энтальпией реакции") или U реакции.

Если реакция протекает в растворе или в твердой фазе, где изменение объема незначительно, то

H = U + (pV ) U . (3.3)

Если же в реакции участвуют идеальные газы, то при постоянной температуре

H = U + (pV ) = U + n . RT , (3.4)

где n - изменение числа молей газов в реакции.

Для того, чтобы облегчить сравнение энтальпий различных реакций, используют понятие "стандартного состояния". Стандартное состояние - это состояние чистого вещества при давлении 1 бар (= 10 5 Па) и заданной температуре . Для газов - это гипотетическое состояние при давлении 1 бар, обладающее свойствами бесконечно разреженного газа. Энтальпию реакции между веществами, находящимися в стандартных состояниях при температуре T , обозначают (r означает "reaction"). В термохимических уравнениях указывают не только формулы веществ, но и их агрегатные состояния или кристаллические модификации.

Из закона Гесса вытекают важные следствия, которые позволяют рассчитывать энтальпии химических реакций.

Следствие 1.

равна разности стандартных энтальпий образования продуктов реакции и реагентов (с учетом стехиометрических коэффициентов):

Стандартной энтальпией (теплотой) образования вещества (f означает "formation") при заданной температуре называют энтальпию реакции образования одного моля этого вещества из элементов , находящихся в наиболее устойчивом стандартном состоянии. Согласно этому определению, энтальпия образования наиболее устойчивых простых веществ в стандартном состоянии равна 0 при любой температуре. Стандартные энтальпии образования веществ при температуре 298 К приведены в справочниках.

Понятия "энтальпия образования" используют не только для обычных веществ, но и для ионов в растворе. При этом за точку отсчета принят ион H + , для которого стандартная энтальпия образования в водном растворе полагается равной нулю:

Следствие 2. Стандартная энтальпия химической реакции

равна разности энтальпий сгорания реагентов и продуктов реакции (с учетом стехиометрических коэффициентов):

(c означает "combustion"). Стандартной энтальпией (теплотой) сгорания вещества называют энтальпию реакции полного окисления одного моля вещества. Это следствие обычно используют для расчета тепловых эффектов органических реакций.

Следствие 3. Энтальпия химической реакции равна разности энергий разрываемых и образующихся химических связей.

Энергией связи A- B называют энергию, необходимую для разрыва связи и разведения образующихся частиц на бесконечное расстояние:

AB (г) A (г) + B (г) .

Энергия связи всегда положительна.

Большинство термохимических данных в справочниках приведено при температуре 298 К. Для расчета тепловых эффектов при других температурах используют уравнение Кирхгофа :

(дифференциальная форма) (3.7)

(интегральная форма) (3.8)

где C p - разность изобарных теплоемкостей продуктов реакции и исходных веществ. Если разница T 2 - T 1 невелика, то можно принять C p = const. При большой разнице температур необходимо использовать температурную зависимость C p (T ) типа:

где коэффициенты a , b , c и т.д. для отдельных веществ берут из справочника, а знак обозначает разность между продуктами и реагентами (с учетом коэффициентов).

ПРИМЕРЫ

Пример 3-1. Стандартные энтальпии образования жидкой и газообразной воды при 298 К равны -285.8 и -241.8 кДж/моль, соответственно. Рассчитайте энтальпию испарения воды при этой температуре.

Решение . Энтальпии образования соответствуют следующим реакциям:

H 2(г) + ЅO 2(г) = H 2 O (ж) , H 1 0 = -285.8;

H 2(г) + ЅO 2(г) = H 2 O (г) , H 2 0 = -241.8.

Вторую реакцию можно провести в две стадии: сначала сжечь водород с образованием жидкой воды по первой реакции, а затем испарить воду:

H 2 O (ж) = H 2 O (г) , H 0 исп = ?

Тогда, согласно закону Гесса,

H 1 0 + H 0 исп = H 2 0 ,

откуда H 0 исп = -241.8 - (-285.8) = 44.0 кДж/моль.

Ответ. 44.0 кДж/моль.

Пример 3-2. Рассчитайте энтальпию реакции

6C (г) + 6H (г) = C 6 H 6(г)

а) по энтальпиям образования; б) по энергиям связи, в предположении, что двойные связи в молекуле C 6 H 6 фиксированы.

Решение . а) Энтальпии образования (в кДж/моль) находим в справочнике (например, P.W.Atkins, Physical Chemistry, 5th edition, pp. C9-C15): f H 0 (C 6 H 6(г)) = 82.93, f H 0 (C (г)) = 716.68, f H 0 (H (г)) = 217.97. Энтальпия реакции равна:

r H 0 = 82.93 - 6 716.68 - 6 217.97 = -5525 кДж/моль.

б) В данной реакции химические связи не разрываются, а только образуются. В приближении фиксированных двойных связей молекула C 6 H 6 содержит 6 связей C- H, 3 связи C- C и 3 связи C=C. Энергии связей (в кДж/моль) (P.W.Atkins, Physical Chemistry, 5th edition, p. C7): E (C- H) = 412, E (C- C) = 348, E (C=C) = 612. Энтальпия реакции равна:

r H 0 = -(6 412 + 3 348 + 3 612) = -5352 кДж/моль.

Разница с точным результатом -5525 кДж/моль обусловлена тем, что в молекуле бензола нет одинарных связей C- C и двойных связей C=C, а есть 6 ароматических связей C C.

Ответ. а) -5525 кДж/моль; б) -5352 кДж/моль.

Пример 3-3. Пользуясь справочными данными, рассчитайте энтальпию реакции

3Cu (тв) + 8HNO 3(aq) = 3Cu(NO 3) 2(aq) + 2NO (г) + 4H 2 O (ж)

Решение . Сокращенное ионное уравнение реакции имеет вид:

3Cu (тв) + 8H + (aq) + 2NO 3 - (aq) = 3Cu 2+ (aq) + 2NO (г) + 4H 2 O (ж) .

По закону Гесса, энтальпия реакции равна:

r H 0 = 4 f H 0 (H 2 O (ж)) + 2 f H 0 (NO (г)) + 3 f H 0 (Cu 2+ (aq)) - 2 f H 0 (NO 3 - (aq))

(энтальпии образования меди и иона H + равны, по определению, 0). Подставляя значения энтальпий образования (P.W.Atkins, Physical Chemistry, 5th edition, pp. C9-C15), находим:

r H 0 = 4 (-285.8) + 2 90.25 + 3 64.77 - 2 (-205.0) = -358.4 кДж

(в расчете на три моля меди).

Ответ. -358.4 кДж.

Пример 3-4. Рассчитайте энтальпию сгорания метана при 1000 К, если даны энтальпии образования при 298 К: f H 0 (CH 4) = -17.9 ккал/моль, f H 0 (CO 2) = -94.1 ккал/моль, f H 0 (H 2 O (г)) = -57.8 ккал/моль. Теплоемкости газов (в кал/(моль. К)) в интервале от 298 до 1000 К равны:

C p (CH 4) = 3.422 + 0.0178 . T , C p (O 2) = 6.095 + 0.0033 . T ,

C p (CO 2) = 6.396 + 0.0102 . T , C p (H 2 O (г)) = 7.188 + 0.0024 . T .

Решение . Энтальпия реакции сгорания метана

CH 4(г) + 2O 2(г) = CO 2(г) + 2H 2 O (г)

при 298 К равна:

94.1 + 2 (-57.8) - (-17.9) = -191.8 ккал/моль.

Найдем разность теплоемкостей как функцию температуры:

C p = C p (CO 2) + 2C p (H 2 O (г)) - C p (CH 4) - 2C p (O 2) =
= 5.16 - 0.0094T (кал/(моль. К)).

Энтальпию реакции при 1000 К рассчитаем по уравнению Кирхгофа:

= + = -191800 + 5.16
(1000-298) - 0.0094 (1000 2 -298 2)/2 = -192500 кал/моль.

Ответ. -192.5 ккал/моль.

ЗАДАЧИ

3-1. Сколько тепла потребуется на перевод 500 г Al (т.пл. 658 о С, H 0 пл = 92.4 кал/г), взятого при комнатной температуре, в расплавленное состояние, если C p (Al тв) = 0.183 + 1.096 10 -4 T кал/(г К)?

3-2. Стандартная энтальпия реакции CaCO 3(тв) = CaO (тв) + CO 2(г) , протекающей в открытом сосуде при температуре 1000 К, равна 169 кДж/моль. Чему равна теплота этой реакции, протекающей при той же температуре, но в закрытом сосуде?

3-3. Рассчитайте стандартную внутреннюю энергию образования жидкого бензола при 298 К, если стандартная энтальпия его образования равна 49.0 кДж/моль.

3-4. Рассчитайте энтальпию образования N 2 O 5 (г) при T = 298 К на основании следующих данных:

2NO(г) + O 2 (г) = 2NO 2 (г), H 1 0 = -114.2 кДж/моль,

4NO 2 (г) + O 2 (г) = 2N 2 O 5 (г), H 2 0 = -110.2 кДж/моль,

N 2 (г) + O 2 (г) = 2NO(г), H 3 0 = 182.6 кДж/моль.

3-5. Энтальпии сгорания -глюкозы, -фруктозы и сахарозы при 25 о С равны -2802,
-2810 и -5644 кДж/моль, соответственно. Рассчитайте теплоту гидролиза сахарозы.

3-6. Определите энтальпию образования диборана B 2 H 6 (г) при T = 298 К из следующих данных:

B 2 H 6 (г) + 3O 2 (г) = B 2 O 3 (тв) + 3H 2 O(г), H 1 0 = -2035.6 кДж/моль,

2B(тв) + 3/2 O 2 (г) = B 2 O 3 (тв), H 2 0 = -1273.5 кДж/моль,

H 2 (г) + 1/2 O 2 (г) = H 2 O(г), H 3 0 = -241.8 кДж/моль.

3-7. Рассчитайте теплоту образования сульфата цинка из простых веществ при T = 298 К на основании следующих данных.

Все методы расчета тепловых эффектов основаны на уравнении Кирхгоффа в интегральной форме.

Чаще всего, в качестве первой температуры используют стандартную 298,15K.

Все методы расчета тепловых эффектов сводятся к способам взятия интеграла правой части уравнения.

Методы взятия интеграла:

I. По средним теплоемкостям. Данный метод является наиболее простым и наименее точным. В этом случае выражение под знаком интеграла заменяется на изменение средней теплоемкости, которая не зависит от температуры в выбранном диапазоне.

Средние теплоемкости табулированы и измерены для большинства реакций. Их легко рассчитать по справочным данным.

II. По Истинным теплоемкостям. (С помощью температурных рядов)

В этом методе подынтегральное выражение теплоемкости записывается как температурный ряд:

III. По высокотемпературным составляющим энтальпии. Данный метод получил большое распространение с развитием ракетной техники при расчете тепловых эффектов химических реакций при высоких температурах. Он основан на определении изобарной теплоемкости:

Высокотемпературная составляющая энтальпии. Она показывает, насколько изменится энтальпия индивидуального вещества при нагревании его на определенное количество градусов.

Для химической реакции записываем:

Таким образом:

Лекция №3.

План лекции:

1. II закон термодинамики, определение, математическая запись.

2. Анализ II закона термодинамики

3. Расчет изменения энтропии в некоторых процессах