Об утверждении порядка проведения агрохимического обследования почв. Цели и периодичность комплексного агрохимического обследования почв. Сводная аналитическая ведомость

3.3 Значение агрохимического обследования почв

Существующие географические изменения в почвенном покрове и климатических условиях нашей страны предопределяют различия в эффективности применения удобрений по почвенно-климатическим зонам. Действие полного минерального удобрения и навоза на урожай сельскохозяйственных культур уменьшается с северо-запада на юго-восток в европейской части страны и с востока на запад - в азиатской ее части. Это в первую очередь связано с изменениями в уровне потенциального плодородия почв и влагообеспеченности. По характеру увлажнения лугово-лесная зона (дерново-подзолистые почвы) - влажная, лесостепная (серые лесные, оподзоленные, выщелоченные и типичные черноземы) - полувлажная, степная (обыкновенные и южные черноземы) - полузасушливая, сухостепная (темно-каштановые и каштановые почвы) - засушливая, полупустынная и пустынная (светло-каштановые, бурые и сероземные почвы) - очень засушливая. За исключением небольшой зоны влажных субтропиков (желтоземные и красноземные почвы) только лесолуговая и лесостепная зоны страны имеют благоприятные условия обеспеченности теплом и влагой для большинства полевых сельскохозяйственных культур. В остальных регионах проявляется либо дефицит тепла при недостаточной длительности вегетационного периода (северные районы, Сибирь), либо недостаток влаги (южные и юго-восточные районы).

Для повышения эффективности удобрений в засушливых южных и юго-восточных районах страны необходимо принимать все меры для максимального накопления и сохранения влаги в почве: снегозадержание, соответствующие приемы обработки почвы и ухода за растениями и т. д. Здесь особенно важно вносить фосфорно-калийные удобрения с осени под глубокую обработку, чтобы они размещались в более влажном, менее пересыхающем слое почвы. При мелкой заделке эффективность удобрений в засушливых районах (или в засушливые годы в районах с достаточной влагообеспеченностью) снижается особенно резко, а внесение удобрений в подкормку тем более дает незначительный эффект. В районах с большим количеством осадков в осенне-зимний период легкорастворимые азотные (а па легких почвах и калийные) удобрения во избежание вымывания питательных веществ лучше вносить перед посевом весной, а иногда и в подкормки.

При выборе видов и форм удобрений, установлении норм и способов их внесения обязательно учитывают содержание подвижных питательных веществ в почвах, их механический состав, поглотительную способность, реакцию и буферность, смытость и эродированность.

Существенное значение для передвижения питательных веществ удобрений, их поглощения и закрепления в почве имеет механический состав почвы. Легкие почвы отличаются не только меньшим потенциальным плодородием, но и низкой поглотительной и буферной способностью. Это должно учитываться при определении норм и формы удобрений, срока внесения и способа их заделки.

На песчаных и супесчаных подзолистых почвах из калийных удобрений особенно эффективны калийно-магнезиальные соли, из азотных целесообразно применять аммонийные (в нейтрализованной форме) удобрения, азот которых меньше подвергается вымыванию из почвы.

Для правильного дифференцированного применения удобрений важное значение имеет почвенно-агрохимическое обследование с целью определения реакции почвы и содержания в ней подвижных форм питательных веществ, в том числе микроэлементов.

Результаты агрохимического обследования выявили существенные различия в уровне обеспеченности почв нашей страны подвижными формами элементов питания. Значительно различаются по уровню плодородия и содержанию подвижных питательных веществ и почвы отдельных полей хозяйств.

При разработке системы удобрения используются средневзвешенные показатели обеспеченности почв полей севооборота, а различия в содержании подвижных форм элементов питания по каждому обрабатываемому участку учитываются при составлении годовых планов применения удобрений. Важно также учитывать общую окультуренность почвы и степень предшествующей удобренности поля. На достаточно окультуренных и ранее хорошо удобрявшихся почвах нормы органических и минеральных удобрений могут быть снижены.

Проведение комплекса агротехнических, агрохимических, гидромелиоративных, фитосанитарных, противоэрозионных и культуртехнических мероприятий требует объективной и постоянно обновляемой информации о состоянии почвенного плодородия. Для оценки состояния и динамики агрохимических характеристик сельскохозяйственных угодий (пашни, многолетних насаждений, кормовых угодий, залежи) предусматривается проводить систематическое крупномасштабное агрохимическое обследование земель сельскохозяйственного назначения, которое является частью общего мониторинга состояния этих земель.

3.4 Значение фитосанитарного обследования

Фитотоксичность почв. Необходимость определения этого показателя особенно часто возникает при мониторинге химически загрязненных почв или при оценке возможности использования в качестве мелиорантов или удобрений различного рода отходов: осадков сточных вод, различного рода компостов, гидролизного лигнина.

Для выяснения относительной фитотоксичности используют метод рулонной культуры, выращивая проростки тест-растений на рулоне фильтровальной бумаги из семян, замоченных в растворе в различными концентрациями тяжелых металлов.

Фитосанитарный мониторинг культуры имеет ключевое значение в системе интегрированной защиты культур. Мониторинг используют для прогноза сроков появления и численности фитофагов (вредителей), определения оптимальных периодов применения средств защиты растений (биологических, химических), колонизации биологических агентов, определения видового состава фитофагов, а также оценки экономической эффективности проводимых защитных мероприятий.

Приложение к Приказу Минсельхоза России

Порядок проведения карантинного фитосанитарного мониторинга на территории Российской Федерации

1. Порядок проведения карантинного фитосанитарного мониторинга на территории Российской Федерации разработан в соответствии с Федеральным законом от 15 июля 2000 г. N 99-ФЗ "О карантине растений"

2. Настоящий порядок устанавливает правила проведения карантинного фитосанитарного мониторинга на территории Российской Федерации в целях осуществления Россельхознадзором и территориальными органами Россельхознадзора государственного карантинного фитосанитарного контроля, своевременного выявления карантинных объектов, предотвращения проникновения их на территорию Российской Федерации и (или) распространения на территории Российской Федерации.

3. Карантинный фитосанитарный мониторинг (далее - мониторинг) представляет собой систему наблюдений, анализа, оценки и прогноза проникновения на территорию Российской Федерации и (или) распространения на территории Российской Федерации карантинных объектов в целях принятия мер по предотвращению заноса и распространения карантинных объектов, устранению их вредного воздействия на растения или продукцию растительного происхождения

Мониторинг обеспечивает:

Фитосанитарные обследования сельскохозяйственных угодий;

Определение видового состава сорняков, идентификацию вредителей и возбудителей заболеваний сельскохозяйственных культур, степени заселённости и заражённости ими растений с выдачей рекомендаций по способам и срокам защитных мероприятий;

Фитоэкспертизу семян зерновых культур на заражённость их возбудителями болезней с выдачей рекомендаций по мерам борьбы с ними;

Анализ почвы на засоренность её возбудителями корневой гнили;

Анализ партий зерна на наличие вредных примесей и насекомых;

Обеспечение прогнозами о развитии и распространении основных вредителей и болезней сельскохозяйственных культур.

13. Россельхознадзор на основании данных обзора разрабатывает рекомендации по обеспечению карантинной фитосанитарной безопасности Российской Федерации, вносит в Минсельхоз России предложения о разработке необходимых нормативных правовых актов и методических документов по обеспечению карантина растений.

3.5 Значение радиологического обследования

Развитие жизни на Земле всегда происходило в присутствии радиационного фона окружающей среды. Радиоактивное излучение определяется естественным радиационным фоном и искусственным. Естественный радиационный фон – представляет собой ионизирующее излучение от природных источников космического и земного происхождения, действующих на человека на поверхности земли. Космические лучи представляют собой поток частиц (протонов, альфа-частиц, тяжёлых ядер) и жёсткого гамма-излучения (это так называемое первичное космическое излучение). При взаимодействии его с атомами и молекулами атмосферы возникает вторичное космическое излучение, состоящее из мезонов и электронов.

Естественные радиоактивные элементы условно можно разделить на три группы:

1. изотопы радиоактивных семейств урана, тория и актиноурана;

2. не связанные с первой группой радиоактивные элементы – калий - 40, кальций – 48, рубидий – 87 и др.;

3. радиоактивные изотопы, возникающие под действием космического излучения – углерод – 14 и тритии.

Технически изменённый радиационный фон представляет собой ионизирующее излучение от природных источников, претерпевших определённые изменения в результате деятельности человека. Например, поступление радионуклидов в биосферу вместе с извлечёнными на поверхность земли из недр полезными ископаемыми (главным образом минеральными удобрениями), в результате сгорания органического топлива, излучения в помещениях, построенных из материалов, содержащих естественные радионуклиды, а также облучения за счёт полётов на современных самолётах.

Излучение, обусловленное рассеянными в биосфере искусственными радионуклидами, представляет собой искусственный радиационный фон (аварии на АЭС, отходы предприятий ядерной энергетики, использование искусственных ионизирующих излучений в медицине, народном хозяйстве).

Радиоактивное загрязнение природных средств в настоящее время обусловлено следующими источниками:

Глобально распределёнными долгоживущими радиоактивными изотопами – продуктами испытаний ядерного оружия, проводивших в атмосфере и под землёй;

Выбросом радиоактивных веществ из 4-го блока Чернобыльской АЭС в апреле – мае 1986 года;

Плановыми и аварийными выбросами радиоактивных веществ в окружающую среду от предприятий атомной промышленности;

Выбросами в атмосферу и сбросами в водные системы радиоактивных веществ с действующих АЭС в процессе их нормальной эксплуатации;

Привнесенной радиоактивностью (твёрдые радиоактивные отходы и радиоактивные источники).

Атомная энергетика вносит весьма незначительный вклад в изменение радиационного фона окружающей среды при нормальной работе ядерных установок. АЭС является лишь частью ядерного топливного цикла, который начинается с добычи и обогащения урановой руды. Отработанное в АЭС ядерное топливо иногда подвергается вторичной обработке. Заканчивается процесс, как правило, захоронением радиоактивных отходов. (Ипатьев В.А. Лес и Чернобыль)

Большое значение как источника радиации имеют ядерные взрывы. При испытаниях ядерного оружия в атмосфере часть радиоактивного материала выпадает неподалеку от места испытания, какая-то часть задерживается в нижнем слое атмосферы, подхватывается ветром и переносится на большие расстояния. Находясь в воздухе около месяца, радиоактивные вещества во время этих перемещений постепенно выпадают на землю. Однако, большая часть радиоактивного материала выбрасывается в атмосферу (на высоту 10-15 км), где он остаётся многие месяцы, медленно опускаясь и рассеиваясь по всей поверхности земного шара.

Значительная часть радионуклидов находится в почве, как на поверхности, так и в нижних слоях, при этом их миграция во многом зависит от типа почвы, её гранулометрического состава, водно-физических и агрохимических свойств.

Механизм закрепления радиоактивных изотопов в почве, их сорбция имеет большое значение, так как сорбция определяет миграционные качества радиоизотопов, интенсивность поглощения их почвами, а, следовательно, и способность проникать их в корни растений. Сорбция радиоизотопов зависит от многих факторов и одним из основных является механический и минералогический состав почвы тяжёлыми по гранулометрическому составу почвами поглощённые радионуклиды, особенно цезий – 137, закрепляются сильнее, чем лёгкими и с уменьшением размера механических фракций почвы прочность закрепления ими стронция – 90 и цезия – 137 повышается. Наиболее прочно закрепляются радионуклиды илистой фракцией почвы.

Большему удержанию радиоизотопов в почве способствует наличие в ней химических элементов, близких по химическим свойствам к этим изотопам. Так, кальций – химический элемент, близкий по своим свойствам стронцию – 90 и внесение извести, особенно на почвы с высокой кислотностью, ведёт к увеличению поглотительной способности стронция – 90 и к уменьшению его миграции. Калий схож по своим химическим свойствам с цезием – 137. Калий, как неизотопный аналог цезия находится в почве в макроколичествах, в то время как цезий – в ультромикроконцентрациях. Вследствие этого в почвенном растворе происходит сильное разбавление микроколичеств цезия – 137 ионами калия, и при поглощении их корневыми системами растений отмечается конкуренция за место сорбции на поверхности корней. Поэтому при поступлении этих элементов из почвы в растениях наблюдается антагонизм ионов цезия и калия.

Кроме того эффект миграции радионуклидов зависит от метеорологических условий (количество осадков).

Установлено, что стронций – 90 попавший на поверхность почвы, вымывается дождём в самые нижние слои. Следует заметить, что миграция радионуклидов в почвах протекает медленно и их основная часть находится в слое 0 – 5 см.

Накопление (вынос) радионуклидов сельскохозяйственными растениями во многом зависит от свойства почвы и биологической особенности растений. На кислых почвах радионуклиды поступают в растения в значительно больших количествах, чем из почв слабокислых. Снижение кислотности почвы, как правило, способствует уменьшению размеров перехода радионуклидов в растения. Так, в зависимости от свойства почвы содержание стронция – 90 и цезия – 137 в растениях может изменяться в среднем в 10 – 15 раз.

Таким образом, к факторам, лимитирующим почвенное плодородие, можно отнести локальное загрязнение почв радионуклидами и тяжелыми металлами, нефтепродуктами, нарушение почвенного покрова горными выработками и др.

Загрязнение почв нефтепродуктами. При контроле загрязнения почв нефтепродуктами решаются обычно три основные задачи:

1) определяются масштабы (площади загрязнения);

2) оценивается степень загрязнения;

3) выявляется наличие токсичных и канцерогенных соединений.

Первые две задачи могут решаться дистанционными методами, к которым относится аэрокосмическое измерение спектральной отражательной способности почв. По измеренным величинам спектральных коэффициентов яркости (СКЯ) удается обнаружить территории, загрязненные нефтью, а по уровням изменения окраски почв – примерно степень загрязнения.

При мониторинге почв, загрязненных углеводородами, особое внимание уделяется определению полициклических ароматических углеводородов (ПАУ) люминесцентными и газохроматическими методами.

Загрязнение почв тяжелыми металлами. Любые элементы находятся в почве в форме различных соединений, только часть которых доступна растениям. Но эти соединения могут трансформироваться и переходить из одних форм в другие.

Поэтому для целей мониторинга выбирают в известной мере условно две или три важнейших группы. Обычно определяют общее (валовое) содержание элементов, лабильные (подвижные) формы их соединений, иногда отдельно определяют обменные формы и водорастворимые соединения.

Наибольшая эффективность показателей почвенного мониторинга будет достигнута при одновременном контроле за совокупностью параметров, которые учитывают мобильные и стабильные свойства почв и различные виды антропогенного воздействия.

Заключение

В разработке основ почвенно-экологического мониторинга прослеживается несколько этапов. В нашей стране начало им было положено в 1970-е гг. эмпирическими описательными исследованиями. Результами их были сведения об уровнях содержания отдельных химических элементов в почвах и других элементах биосферы на отдельных территориях интенсивного антропогенного действия. Эти исследования давали точечные оценки состояния почв на определенное время обследования, они характеризовали почвы вне связи с пространством и временем (Мотузова Г. В., 1988). По мере роста численности населения Земли и превращения большинства экологических ниш в антропогенно-модифицированные возникала необходимость всё более тщательного контроля за состоянием окружающей среды. Мониторинг стал той системой, которая позволила следить за степенью загрязненности и нарушенности жилища - планеты Земля.

Были разработаны сложные методы слежения за состоянием окружающей среды, частью которой является почвенный покров. Высшим уровнем исследований является создание имитационных моделей загрязнения с помощью мощных суперкомпьютеров. Общая модель экосистемы может служить основой для построения математических моделей, с помощью которых можно получить количественные оценки действия всех выявленных факторов на состояние почв и составлять прогнозные характеристики состояния почв, испытывающих техногенной воздействие.

Работы по научному мониторингу земель, включенные в кадастр научных исследований, пользуются равноправной государственной поддержкой и финансированием наряду с другими видами мониторинга.

Определение и последующая оценка результатов наблюдений, на основе постоянно обновляющихся земельно-мониторинговых данных позволяют решать следующие практические задачи (Черныш А. Ф., 2003):

Выявлять уровень хозяйственных нагрузок на земельные ресурсы в различных территориальных условиях страны, а также объективно устанавливать степень антропогенной преобразованности (нарушенности) почв и почвенного покрова;

С учетом экологического состояния земельного фонда и направлений его изменений разработать территориально дифференцированные концепции, схемы и проекты рационального использования территории, базирующейся на системе определенных экологических ограничений и требований, усовершенствовать технологии производства;

Корректировать и изменять хозяйственное использование земельных ресурсов, на объективной основе устанавливать платежи на землю, в том числе по повышенным ставкам за сверхнормативное загрязнение почв, нерациональное использование земель;

Совершенствовать кадастр земельных ресурсов и экономическую оценку для различных видов природопользования;

Определять эколого-кризисные зоны и зоны с экологически опасной ситуацией и устанавливать для них особые условия хозяйственно-экономического развития с ориентацией на экологически безопасное производство, а в отдельных случаях – прекращение всякой хозяйственной деятельности;

Совершенствовать оценку почв с учетом направлений изменений свойств почв и воспроизводства плодородия земель.

Таким образом, мониторинг любого масштаба, вплоть до глобального, должен стать инструментом управления качеством среды. Если человечество сможет добиться Мира во всём Мире, то благодаря мониторингу сумеет оградить биосферу от разрушения, сохранить чистоту и гармонию для будущих поколений.

Литература

1. Агроэкология / Черников В.А., Алексахин Р. М., Голубев А. В. и др. – М.: Колос, 2000. – 536 с.

2. Глазовская М. А. Геохимия природных и техногенных ландшафтов СССР. – М.: Высш. шк., 1988. – 328 с.

3. Гришина Л.А., Копцик Г. Н., Моргун Л.В. Организация и проведение почвенных исследований для экологического мониторинга. – М.: Изд-во МГУ, 1991. – 82 с.

4. Завилохина О.А. Экологический мониторинг РФ. 2002. http://www.5ballov.ru

5. Законом РФ "Об охране окружающей природной среды". http://ecolife.org.ua/laws/ru/02.php

6. Израэль Ю.А., Гасилина И.К., Ровинский Ф.Я. Мониторинг загрязнения природной среды. Л.: Гидрометеоиздат, 1978. – 560 с.

7. Ландшафтно-геохимические основы фонового мониторинга природной среды / Глазовская М. А., Касимов Н. С., Теплицкая Т. А. и др. – М.: Наука, 1989. - 264 с.

8. Мотузова Г.В. Принципы и методы почвенно-химического мониторинга. – М.: Изд-во МГУ, 1988. – 101 с.

9. Мотузова Г. В. Содержание, задачи и методы почвенно-экологического мониторинга / Почвенно-экологический мониторинг и охрана почв. – М.: Изд-во МГУ, 1994. – С. 80-104.

10. Мотузова Г. В. Соединения микроэлементов в почвах. – М.: Эдиториал УРСС, 1999. – 168 с.

11. Розанов Б.Г. Живой покров Земли.- М.: Наука, 1991. - 98 с.

12. Росновский И.Н., Кулижский С.П. Определение вероятности безотказного функционирования (устойчивости) почв в экосистемах // Сохраним планету Земля: Сборник докладов Международного экологического форума, 1-5 марта 2004 года; СПб: Центральный музей почвоведения им В.В. Докучаева, 2004. – С. 249-252.

13. Садовникова Л.К. Экология и охрана окружающей среды при химическом загрязнении. – М.: Высш. Шк., 2006. – 333 с.

14. Черныш А. Ф. Мониторинг земель. – Минск: БГУ, 2003. – 98 с.

15. http://pravo.levonevsky.org/bazazru/texts18/txt18823.htm

16. http://www.fsvps.ru/fsvps

17. http://www.rsn-omsk.ru/main.php?id=123

18. www.mcx.ru/…/document/show/6813.191.htm

19. http://www.agromage.com/stat_id.php?id=29&k=05

20. Лес и Чернобыль (Лесные экосистемы после аварии на Чернобыльской АЭС, 1986-1994 гг.) / Под ред. Ипатьева В.А. - Мн.: МНПП “СТЭНЕР”. 1994. - 248 с.


Информация о работе «Значение почвенного мониторинга (в т.ч. почвенного, агрохимического, токсико-экологического, фитосанитарного и радиологического обследований) в сохранении почвенного плодородия»

В соответствии с подпунктом 21) пункта 1 статьи 6 Закона Республики Казахстан от 8 июля 2005 года «О государственном регулировании развития агропромышленного комплекса и сельских территорий», ПРИКАЗЫВАЮ:
1. Утвердить прилагаемые Правила проведения агрохимического обследования почв.
2. Департаменту производства и переработки растениеводческой продукции и фитосанитарной безопасности Министерства сельского хозяйства Республики Казахстан в установленном законодательством порядке обеспечить:
1) государственную регистрацию настоящего приказа в Министерстве юстиции Республики Казахстан;
2) в течение десяти календарных дней после государственной регистрации настоящего приказа в Министерстве юстиции Республики Казахстан направление его копии на официальное опубликование в периодических печатных изданиях и в информационно-правовой системе «Әділет»;
3) размещение настоящего приказа на интернет-ресурсе Министерства сельского хозяйства Республики Казахстан.
3. Настоящий приказ вводится в действие по истечении десяти календарных дней после дня его первого официального опубликования.

Исполняющий обязанности
Министра С. Омаров

«СОГЛАСОВАН» «СОГЛАСОВАН»
Министр финансов Министр национальной экономики
Республики Казахстан Республики Казахстан
_________ Б. Султанов __________ Е. Досаев
8 марта 2015 года 10 марта 2015 года

Утверждены
приказом исполняющего обязанности
Министра сельского хозяйства
Республики Казахстан
от 27 февраля 2015 года № 4-1/147

Правила
проведения агрохимического обследования почв

1. Общие положения

1. Настоящие Правила проведения агрохимического обследования почв (далее – Правила) разработаны в соответствии с подпунктом 21) пункта 1 статьи 6 Закона Республики Казахстан от 8 июля 2005 года «О государственном регулировании развития агропромышленного комплекса и сельских территорий» и определяют порядок проведения агрохимического обследования почв пашни государственным учреждением в области агрохимического обслуживания сельскохозяйственного производства, определяемым Правительством Республики Казахстан (далее – государственное учреждение).
2. В настоящих Правилах используются следующие термины:
1) агрохимическое обследование – определение содержания в почве элементов минерального питания растений, гумуса, рН солевого режима, микроэлементов;
2) агрохимическая картограмма – карта, показывающая в цветовом выражении степень обеспеченности почвы усвояемыми для растений питательными элементами – гумуса, макро- и микро элементов;
3) периодичность агрохимического обследования почв – временной период между агрохимическими обследованиями;
4) действующее вещество – наименование питательного элемента и его содержание в агрохимикатах, выраженное в процентах;
5) объединенная проба (образец) – смесь индивидуальных (точечных) проб, отобранных в пределах элементарного участка;
6) геоинформационная система – автоматизированная система, предназначенная для сбора, обработки, анализа, моделирования и отображения данных, а также решения информационных и расчетных задач с использованием цифровой картографической и текстовой информации;
7) пашня – земельный участок, систематически обрабатываемый и используемый под посевы сельскохозяйственных культур, включая посевы многолетних трав, а также чистые пары. К пашне не относятся земельные участки сенокосов и пастбищ, занятые посевами предварительных культур (в течение не более трех лет), распаханные с целью коренного улучшения, а также междурядья садов, используемые под посевы;
8) земельный участок – выделенная в замкнутых границах часть земли, закрепляемая в установленном Земельным кодексом Республики Казахстан от 6 июля 2007 года порядке за субъектами земельных отношений;
9) план землепользования – картографический документ на землепользование, дающий наглядное представление о пространственном положении и размерах землепользования, содержащий информацию о составе и площадях пашни;
10) сводная аналитическая ведомость – учетный документ агрохимических показателей, состоящий из результатов проведенных химических анализов на содержание макро- и микроэлементов в почвах;
11) рабочий участок – часть отдельно обрабатываемой площади пашни, занимающая определенное положение по рельефам (водораздел, склон, понижение склона, пойма) и выделяемая на плане внутрихозяйственного землеустройства при проведении землеустроительных работ;
12) пахотный слой – слой почвы, подвергаемый регулярной механической обработке;
13) гумус – органическая, обычно темноокрашенная, часть почвы, образующаяся в результате биохимического превращения растительных и животных остатков;
14) завалуненность – наличие валунов (камней) в почве;
15) микроэлементы – химические элементы, содержащиеся в почве, растениях и живых организмах в незначительных количествах;
16) плавни реки – длительно затапливаемые поймы;
17) паспортная ведомость – документ, содержащий детальную почвенно-агрохимическую и агрономическую характеристику каждого поля;
18) орошаемые земли – земли, на которых сельскохозяйственные культуры выращиваются в условиях орошения;
19) богарные земли – земли, на которых сельскохозяйственные культуры выращиваются без орошения;
20) почва – особое природное образование, обладающее рядом свойств, присущих живой и неживой природе, состоящее из генетически связанных горизонтов (образуют почвенный профиль), возникающих в результате преобразования поверхностных слоев литосферы под совместным воздействием воды, воздуха и организмов;
21) комплекс почв – мозаичный почвенный покров, состоящий из чередующихся мелких участков почв различных типов, которые, непрерывно повторяясь, сменяют один другого через несколько метров;
22) плодородие почвы – способность почвы обеспечивать растения усвояемыми питательными веществами, влагой и давать урожай;
23) почвенная проба – проба почвенного материала, отобранная для лабораторного исследования;
24) засоление почв – повышение концентрации солей в почве, в конечном итоге делающее невозможным рост растений;
25) эродирование почв – разрушение, смыв и выдувание верхнего слоя почвы;
26) чек – участок земли, предназначенный для выращивания риса;
27) элементарный участок – площадь пашни, характеризуемая одной объединенной пробой.

2. Порядок проведения агрохимического обследования почв

3. Заключительные положения

18. По результатам проведенного агрохимического обследования почв составляются:
1) сводная аналитическая ведомость, согласно приложению 4 к настоящим Правилам.
2) паспортная ведомость, согласно приложению 5 к настоящим Правилам;
3) агрохимическая картограмма, согласно приложению 2 к настоящим Правилам.
19. На основании документов, указанных в пункте 18 настоящих Правил, составляется агрохимический очерк по форме, согласно приложению 6 к настоящим Правилам, который предоставляется собственнику земельного участка и (или) землепользователю.
По результатам агрохимического очерка составляется заключение о результатах агрохимического обследования почв, которое предоставляется собственнику земельного участка и (или) землепользователю.
20. Государственное учреждение по результатам агрохимического обследования почв составляет агрохимический атлас плодородия почв района, области.
Агрохимический атлас плодородия почв составляется по завершении цикла обследования для каждой области в разрезе районов и для каждого района в разрезе хозяйств.
Агрохимический атлас включает цветные картограммы содержания гумуса, питательных элементов и пояснения к ним.
21. Документы, указанные в пункте 18 настоящих Правил, подлежат хранению в государственном учреждении в течение 7 лет.
Результаты агрохимического обследования почв хранятся в информационном банке данных об агрохимическом состоянии земель сельскохозяйственного назначения в соответствий с приказом Министра сельского хозяйства Республики Казахстан от 25 июня 2014 года № 6-1/321 «Об утверждении Правил создания и ведения информационного банка данных об агрохимическом состоянии земель сельскохозяйственного назначения» (зарегистрированный в Реестре государственной регистрации нормативных правовых актов № 9618).
Защита информационного банка данных осуществляется путем шифрования находящейся в нем информации с использованием шифровального ключа, доступ к которому имеет только руководитель государственного учреждения или замещающее его лицо.
22. По запросу государственного инспектора по использованию и охране земель государственное учреждение представляет копии агрохимического очерка с заключением о результатах агрохимического обследования почв.
23. При снижении показателей плодородия почв, установленных при сравнении результатов двух последних агрохимических обследований почв, государственное учреждение информирует об этом государственного инспектора по использованию и охране земель.

Приложение 1
к Правилам проведения

Уведомление об агрохимическом обследовании почв

Уведомляем, что следующими представителями государственного
учреждения:

____________________________________________________________________
____________________________________________________________________
в период с ___________ 20__ года по ____________ 20__ года будет
проведено агрохимическое обследование почв _________________________
________________________________________________________________.
(собственник земельного участка и (или) землепользователь)

Прошу обеспечить доступ представителей государственного
учреждения на поля, подлежащие обследованию. При проведении
обследования осуществляется участие и контроль со стороны
собственника земельного участка и (или) землепользователя.

Руководитель: ____________________________ ____________
(фамилия, имя, отчество (подпись)
(при наличии в документе,
удостоверяющем личность)

Место печати

Приложение 2
к Правилам проведения
агрохимического обследования почв

Агрохимическая картограмма

Условные обозначения

20 - номер поля
220 площадь поля


0 – 2,0

очень низкое


2,1 – 4,0

низкое


4,1 – 6,0

среднее


6,1 – 8,0

повышенное


8,1 – 10,0

высокое


> 10,0

очень высокое


Приложение 3
к Правилам проведения
агрохимического обследования почв

Перечень документов по анализу почвенных проб

Определение органического вещества (гумуса) по методу Тюрина в модификации ЦИНАО. ГОСТ 26213-91;
Определение органического вещества (гумуса) по методу Тюрина в модификации Никитина. ГОСТ 62213-91;
Определение легкогидролизуемого азота по методу Тюрина и Кононовой Практикум по агрохимии: под редакцией Минеева, 2001 год;
Определение щелочногидролизуемого азота по методу Корнфилда; Практикум по агрохимии: под редакцией Минеева, 2001 год;
Определение нитратного азота по методу Грандваль-Ляжу, Практикум по агрохимии: под редакцией Минеева, 2001 год;
Определение нитратов ионометрическим методом. ГОСТ 26951-86;
Определение нитратов по методу ЦИНАО. ГОСТ 26488-85;
Определение подвижного фосфора и калия в карбонатных почвах по методу Мачигина в модификации ЦИНАО. ГОСТ 26205-91;
Определение подвижного фосфора и калия в некарбонатных почвах по методу Чирикова в модификации ЦИНАО. ГОСТ 26204-91;
Определение подвижных соединений фосфора и калия по методу Кирсанова в модификации ЦИНАО. ГОСТ 26207;
Определение фосфора и калия по новой технологии ЦИНАО (на автоматизированной аналитической системе) в вытяжках из почв по методу Чирикову или Мачигину. ОСТ 10 256-2000, ОСТ 10 258-2000;
Определение гумуса методом Тюрина в модификации ЦИНАО (на автоматизированной аналитической системе); Ю.М. Логинов, А.Н. Стрельцов. Автоматизация аналитических работ и приборное обеспечение мониторинга плодородия почв и качества растениеводческой продукции. – М.: Агробизнес – центр, 2010;
Определение тяжелых металлов в почвах (на автоматизированной аналитической системе) Ю.М. Логинов, А.Н. Стрельцов Автоматизация аналитических работ и приборное обеспечение мониторинга плодородия почв и качества растениеводческой продукции. – М.: Агробизнес – центр, 2010;
Автоматизированное определение состава почв на анализаторах PRIMACS snc , SKALAR SAN ++ (соответствие международным требованиям ISO, EN, AOAS, ASBC и др.);
Методы определения удельной электрической проводимости, рН солевого режима и плотного остатка водной вытяжки. ГОСТ 26423-85;
Методы определения удельной электрической проводимости, рН солевого режима и плотного остатка солевой вытяжки. ГОСТ 26483-85;
Метод определения подвижных соединений двух- и трехвалентного железа по Веригиной-Аринушкиной. ГОСТ 27395-87;
Методы определения влажности, максимальной гигроскопической влажности и влажности устойчивого завядания растений. ГОСТ 28268-89;
Определение тяжелых металлов в почвах сельхозугодий и продукции растениеводства, Методические указания, Москва, 1992 год;
Определение подвижных соединений меди и кобальта по методу Крупского и Александровой в модификации ЦИНАО в карбонатных почвах. ГОСТ 50683-94;
Определение подвижных соединений меди по методу Пейве и Ринькиса в модификации ЦИНАО. ГОСТ 50684-94;
Определение подвижных соединений кобальта по методу Пейве и Ринькиса в модификации ЦИНАО. ГОСТ 50687-94;
Определение подвижных соединений марганца по методу Крупского и Александровой в модификации ЦИНАО в карбонатных почвах. ГОСТ 50685-94;
Определение подвижных соединений марганца по методу Пейве и Ринькиса в модификации ЦИНАО ГОСТ 50682-94
Определение подвижных соединений цинка по методу Крупского и Александровой в модификации ЦИНАО в карбонатных почвах. ГОСТ 50686-94;
Определение подвижных соединений молибдена по методу Григга в модификации ЦИНАО. ГОСТ 50689-94;
Почвы. Определение подвижной серы по методу ЦИНАО. ГОСТ 26490-85;
Определение подвижных соединений бора по методу Бергера и Труога в модификации ЦИНАО. ГОСТ 50688-94;
Метод определения ионов карбонатов и бикарбонатов в водной вытяжке. ГОСТ 26424-85;
Метод определения кальция и магния в водной вытяжке. ГОСТ 26428-85;
Метод определения обменного кальция и обменного (подвижного) магния методами ЦИНАО. ГОСТ 26487-85;
Метод определения иона хлорида в водной вытяжке. ГОСТ 26425-85;
Метод определения иона сульфата в водной вытяжке. ГОСТ 26426-85;
Метод определения натрия и калия в водной вытяжке. ГОСТ 26427-85;
Методы определения водорастворимых кальция и магния. ГОСТ 27753.9-88.

Приложение 4
к Правилам проведения
агрохимического обследования почв

Область ___________________________
Район _____________________________
Хозяйство__________________________
Год обследования __________________

Сводная аналитическая ведомость

Образцы с № _____ по №_______

Образец

Поле

P 2 O 5

K 2 O

Гумус %

рН

Образец

Поле

P 2 O 5

K 2 O

Гумус %

рН

мг/кг почвы

мг/кг почвы












































(фамилия, имя, отчество (при наличии в документе,
удостоверяющем личность), должность)

Сводная аналитическая ведомость по микроэлемент

Образцы с № _____ по №______

Образец

Поле

Образец

Поле

мг/кг почвы

мг/кг почвы











































Обследование провел: _________________________________________
(фамилия, имя, отчество (при наличии в
документе, удостоверяющем личность), должность)

Приложение 5
к Правилам проведения
агрохимического обследования почв

Область_____________________________
Район_______________________________
Хозяйство___________________________
Год обследования____________________

Паспортная ведомость

Основные агрохимические характеристики почв земельных участков


п/п

Поле

Площадь, га

Тип почвы

N-легкогидролиз

Подвижный фосфор

Обменный калий

Гумус

Кислотность

мг/кг почвы

группа по содержанию

мг/кг почвы

группа по содеранию

мг/кг почвы

группа по содержанию

группа по содержанию

рН

группа





























Микроэлементы


п/п

Поле

Площадь, га

Тип почвы

мг/кг почвы

группа по содержанию

мг/кг почвы

группа по содержанию

мг/кг почвы

группа по содержанию

мг/кг почвы

группа по содержанию

мг/кг почвы

группа по содержанию





























Приложение 6
к Правилам проведения
агрохимического обследования почв

Оформление агрохимического очерка

1. Титульный лист, утвержденный руководителем государственного учреждения.
2. Список исполнителей.
3. Введение, цели, задачи агрохимического обследования почв.
4. Основная часть (результаты агрохимических исследований, сведения о собственниках земельных участков и (или) землепользователях, группировки почв, агрохимические картограммы).
5. Заключение.
6. Приложения.

Комплексное агрохимическое обследование почв сельскохозяйственных угодий проводится с целью контроля направленности и оценки изменения плодородия почв, характера и уровня их загрязнения под воздействием антропогенных факторов, создания банков данных полей (рабочих участков), проведения сплошной сертификации земельных (рабочих) участков почв.

Для оценки состояния и динамики агрохимических характеристик сельскохозяйственных угодий (пашни, многолетних насаждений, кормовых угодий, залежи) предусматривается продолжение проведения систематического крупномасштабного агрохимического обследования земель сельскохозяйственного назначения, которое является важной составной частью общего мониторинга состояния этих земель.

Основными задачами агрохимического мониторинга состояния земель являются:

Своевременное выявление изменений состояния плодородия сельскохозяйственных угодий;

Их оценка, прогноз на перспективу и принятие необходимых мер по сохранению и улучшению плодородия почв;

Информационное обеспечение земельного кадастра государственного контроля почвенного плодородия и охраны земель.

Агрохимическое обследование проводится на всех типах сельскохозяйственных угодий – пашня, в т.ч. орошаемая и осушенная, кормовые угодья, многолетние насаждения и плантации, залежь.

Периодичность агрохимического обследования почв устанавливается дифференцированно для различных природно-экономических и зон РФ.

Сроки повторных обследований:

Для хозяйств, применяющих более 60 кг/га д.в. по каждому виду минеральных удобрений – 5 лет;

Для хозяйств со средним уровнем 30-60 кг/га д.в. применения удобрений по каждому виду – 5-7 лет;

Для орошаемых сельскохозяйственных угодий – 3 года;

Для осушенных угодий – 3-5 лет;

Для экспериментальных хозяйств комплексной химизации и при внедрении инновационных проектов (независимо от объемов применяемых удобрений) – 3 года;



По заявкам хозяйств, применяющих высокие дозы удобрений, допускается сокращение сроков между повторными обследованиями.

На ряду с основными задачами агрохимического обследования почв существуют и другие задачи, такие как: ландшафтно-агрохимическая, эколого-токсикологическая, гербологическая и радиационная оценки и контроль изменения экологического состояния и плодородия почв с/х. угодий.

Составной частью обследования сельхозугодий является проведение визуального контроля за проявлениями фототоксического действия и последствия гербицидов на с/х. культуры.

Под фототоксичностью гербицидов понимается токсическое действие самих гербицидов, их остаточных количеств и метаболитов, содержащихся в почве от ранее проведенных обработок, на с/х. культуры. Фитотоксичность проявляется в виде общего хлороза растений, пожелтении, скручивании кончиков и краев листьев, стеблей и других частей растения, в отставании растений в росте, высыхании, отсутствии всходов и т.д.

Визуальный контроль гербицидной фитотоксичночти осуществляется во время отбора почвенных образцов. В процессе контроля производится оценка интенсивности (характера) и масштабов повреждения растений в баллах.

Отбор проб производится по общепринятой методике на глубину пахотного слоя. Для угодий, на которых установлены случаи проявления гербицидной фитотоксичности, изучают историю путем сбора в хозяйствах информации, которая должна включать сведения о культуре.

Одновременно с отбором почвенных образцов в полевых условиях проводятся радиологические обследования. Радиологическое обследование проводится путем замера гаммафона и отбора почвенных образцов. Для определения мощности экспозиционной дозы гамма-излучения почв рекомендуется использовать дозиметр ДРГ-01Т. В случае отсутствия данного прибора можно использовать дозиметр ДРГ-05М или сцинтилляционный геологоразведочный прибор СРП-88Н. В соответствии с техническим описанием, проводится проверка точности работы прибора в лаборатории или его госпроверка. (А. Н. Есаулко, В. В. Агеев, Л.С. Горбатко и др., 2011)

Планирование и организация работы, камеральная подготовка картографической основы для проведения агрохимического обследования почв.

Агрохимическое обследование почв проводится в соответствии с планами работ, согласованными с региональными органами управления с/х. производством, а также с руководителями фермерских (крестьянских) хозяйств, колхозов, кооперативов и других форм собственности.

В плане работ определяются ежегодные объемы площадей почв, подлежащих обследованию по видам угодий, число агрохимических анализов по видам с указанием методов их выполнения. Устанавливается очередность проведения работ по административным районам. Агрохимическое обследование почв административного района должно проводится за один полевой сезон.

План работ на текущий год составляется руководителем отдела почвенно-агрохимических изысканий.

Площади с/х. угодий, подлежащих обследованию, учитываются по состоянию на 1 января предшествующего агрохимическому обследованию года.

Утвержденный план работ по агрохимическому обследованию почв доводится до заказчиков не позднее 15 ноября предшествующего агрохимическому обследованию года.

Заключение договоров с хозяйствами на проведение агрохимического обследования почв проводится не позднее 15 декабря предшествующего агрохимическому обследованию года.

План проведения агрохимического обследования в отделе почвенно-агрохимических изысканий организуются полевые группы в составе начальника группы, главных, ведущих, старших специалистов и специалистов почвоведов-агрохимиков. Число и состав групп определяются объемом почвенно-агрохимических изысканий.

Руководитель отдела почвенно-агрохимических изысканий несет ответственность за планирование, организацию и качество по агрохимическому обследованию почв и соблюдение договорных обязательств.

Картографической основой проведения агрохимического обследования почв является, как правило, план внутрихозяйственного землеустройства.

Подготовка картографической основы для агрохимического обследования почв осуществляется специалистами групп картографических материалов.

Работа по подготовке картографических материалов состоит из следующих этапов:

Получение от отделов землепользования, землеустройства и охраны почв производственных управлений сельского хозяйства землеустроительных планов, почвенных, кадастровых карт, карт внутрихозяйственной оценки земель;

Перенос на землеустроительные планы границ контуров типов, подтипов почв, земельных участков и их кадастровых номеров;

Составление ведомости сравнения нумерации земельных участков, принятых в практической работе ГЦАС, с единой кадастровой нумерацией, принятой в настоящее время.

Первичным объектом государственной кадастровой оценки являются сельскохозяйственные угодья ассоциаций крестьянских хозяйств, колхозов, с/х. кооперативов, акционерных обществ государственных и муниципальных предприятий, подсобных с/х. предприятий, с/х. научно-исследовательских и учебных заведений, прочих предприятий, организаций и учреждений, КФХ, фонда перераспределения земель района, с/х. угодья.

Объекты кадастровой оценки группируются в границах бывших колхозов и совхозов до их реформирования, по которым оформлялись материалы почвенных обследований, и проводилась внутрихозяйственная оценка земель. Исходная земельно-учетная и результативная земельно-оценочная информация первичных объектов кадастровой оценки обобщается по административным, земельно-оценочным районам (при зональности) и субъекту РФ в целом.

Список объектов кадастровой оценки административных районов в разрезе бывших хозяйств составляется согласно сложившемуся на начало года материалов проведения кадастровой оценки земельного фонда района по форме. В список включаются собственники, землевладельцы и землепользователи.

В списке по каждому объекту кадастровой оценки указываются его наименование, кадастровый номер, общая площадь с/х. угодий, в т.ч. пашни.

Объекты кадастровой оценки именуются согласно названию юридического лица, сельской, городской администрации, фамилии, имени и отчеству фермера. Кадастровый номер включает код субъекта РФ, административного района, бывшего хозяйства и объекта кадастровой оценки.

Информация о площадях с/х. угодий, в т.ч. пашни, собирается по данным кадастрового учета земель по состоянию на 1 января года проведения кадастровой оценки земель. Данные уточняются в районе при согласовании списка объектов кадастровой оценки.

По каждому хозяйству подготавливается не менее 10 экземпляров копий плановой основы. Три экземпляра картографической основы с нанесенными почвенными контурами передают руководителю отдела почвенно-агрохимических изысканий – 1 экземпляр используют для полевых работ; 2 – служит для перенесения элементарных участков и номеров проб; 3 – является запасным; остальные экземпляры плановой основы используют для составления авторских экземпляров агрохимических картограмм. (А. Н. Есаулко, В. В. Агеев, Л.С. Горбатко и др., 2011)

Для обследования эродированных почв используется только та плановая основа, на которой выделены контуры почв различной степени эродированности.

Для агрохимического обследования орошаемых с/х. угодий используется карта (план) орошаемых земель.

В нечерноземной, лесостепной и степной зонах, горных областях полевое агрохимическое обследование проводится в масштабе 1:100000 и 1:25000; в полупустынной и пустынной зонах – в масштабе 1:25000. Допускается уменьшение масштаба ДО 1:50000 при условии четкого выделения на картографической основе всех земельных участков с/х. угодий. На орошаемых землях обследование проводится в масштабе 1:5000 – 1:10000.

При выезде на полевые работы специалистам, проводящим агрохимическое обследование, выдаются сопроводительные письма, подписанные начальником районного управления сельского хозяйства., необходимое снаряжение, наряд-отчет на проведение работ. Полевые работы проводятся при температуре не ниже +5 0 С.

По приезде в хозяйство почвовед-агрохимик собирает сведения о применении удобрений, проведении мелиорации, урожайности с/х. культур за последние 3-5 лет и заносит их в журнал агрохимического обследования почв хозяйства.

Совместно с агрономом хозяйства почвовед-агрохимик объезжает и осматривает земельные угодья, уточняет и наносит на план землепользования визуальные изменения в ситуации (новые дороги, границы полей, лесопосадки и т.д.). На орошаемых участках отмечаются отложение солей на поверхности. Уточняется размещение посевов с/х. культур, их состояние, степень засоренности, соответствие конфигурации площади кадастровому номеру земельного участка, отмечаются земельные участки, систематически удобрявшиеся высокими дозами удобрений, отмечается эродированность, заустаренность и завалуненность полей. Все эти данные заносят в «Журнал агрохимического обследования почв…» и отмечают на плане землепользования.

Для составления сертификатов почв земельных участков и уточнения суммарных площадей различных типов с/х. угодий почвовед-агрохимик проверяет соответствие общей площади каждого из с/х. угодий с информацией кадастровой карты.

Сертифицируемые земельные участки выделяют почвовед-агроном и главный агроном хозяйства по кадастровой карте перед проведением агрохимического обследования почв. При этом учитываются сложившиеся в хозяйстве система землепользования и нумерация кадастровой карты. Схема земельных участков обязательно должна соответствовать кадастровой карте.

Введение

Агрохимия в настоящее время по праву занимает центральное место среди агрономических дисциплин, так как применение удобрений - самое эффективное средство развития и совершенствования растениеводства. Значение агрохимии усиливается в связи с тем, что она изучает в сумме все воздействия на растения и приемы их выращивания./1/

Агрохимия - наука о взаимодействии растений почвы и удобрений в процессе выращивания сельскохозяйственных культур, о круговороте веществ в земледелии и использовании удобрений для увеличения урожая, улучшения его качества и повышения плодородия почвы./3/

Главная задача агрохимии - управление круговоротом и балансом химических элементов в системе почва - растение и выявление тех мер воздействия на химические процессы, протекающие в почве и растении, которые могут повышать урожай или изменять его состав. Цель агрохимии - создание наилучших условий питания растений с учетом знания свойств различных видов и форм удобрений, особенностей их взаимодействия с почвой, определение наиболее эффективных форм, способов, сроков применении удобрений. Изучая биологические, химические, физико-химические свойства почв, агрохимия познает ее плодородие. Этот раздел агрохимии тесно связал с наукой о почве - почвоведением./1/

Целью данной курсовой работы является определение типа почвы по данному почвенному образцу №6, оценка агрохимических показателей почвенного образца №6 и рекомендации по применению агрохимикатов. Диалектическая сущность агрохимии - это исследование процесса взаимного влияния трех систем почва - удобрение - растение, результатом которого является урожай и его качество./3/

Агрохимическое обследование почв и его роль в диагностике питания

Агрохимические обследования проводятся в целях получения информации о содержании в почве элементов питания растений и как следствии уровня ее плодородия. Агрохимическое обследований позволяет более рационально использовать удобрения, и минимизировать их негативное воздействие на окружающую среду. В результате создаются агрохимические картограммы содержания элементов, агрохимические очерки и аппликационные карты внесения удобрений. Кроме того, можно провести почвенно-агрохимическое обследование. Получить и почвенную карту, и карту внесения удобрений. Как правило, при проведении агрохимического анализа почва исследуется на меньшее количество показателей, но в случае определенных условий можно добавить необходимые определения. Гранулометрический состав (механический состав, почвенная текстура)- это относительное содержание в почве твердых частиц разного размера. Этот анализ позволяет классифицировать почвы на глинистые, суглинистые и тд. От этого параметра зависят тепловой, воздушный, водный режимы почв, а также физические, физико-химические и биологические свойства. Реакция почвенного раствора (рН)- зависит от содержания в растворе свободных ионов водорода (Н+) и гидроксила (ОН-). В свою очередь концентрация этих ионов зависит от содержания в растворе органических и минеральных кислот, оснований, кислых и основных солей, а также от степени диссоциации этих соединений. Реакция почвенного раствора очень важный параметр, влияющий на развитие растений и микроорганизмов. Реакция раствора в различных почвах изменяется от сильнокислой (верховые болота, подзолистые почвы) до сильнощелочной (содовые солонцы). Многие почвы (черноземы, каштановые и др.) характеризуются реакцией, близкой к нейтральной. Гумус (перегной)- часть органического вещества почвы, представленная совокупностью специфических и неспецифических органических веществ почвы, за исключением соединений, входящих в состав живых организмов и их остатков. Гумус играет большую роль в создании плодородия, прежде всего как носитель запасов элементов питания. Большая роль принадлежит гумусу и в формировании структуры, определяет он и режимы и свойства почвы. Азот, фосфор, калий- важнейшие биофильные элементы, им принадлежит важнейшая роль в питании растений

Почвенные образцы отбирают весной до посева или осенью сразу после уборки урожая (до внесения удобрений). Если это не удалось сделать до внесения удобрений, то при малых их дозах образцы берут через 2--3 мес. При небольших дозах навоза или компоста образцы следует брать осенью, а при больших - на следующий год.

Образцы почв на пашне отбирают из пахотного слоя, а на орошаемых землях и при сильной пестроте почвенного профиля в других случаях (близкое залегание карбонатов, гипса и т. д.) - и из подпахотных горизонтов (не более 15% количества образцов из пахотного слоя). На лугах и пастбищах образцы берут из слоя наибольшей биологической активности (до глубины 15--16 см) и незначительное количество (10-- 15%) из слоя 20-40 см. Частота взятия смешанных почвенных образцов зависит от почвенных условий. В сельскохозяйственных районах лесной зоны с дерново-подзолпстыми почвами и в других зонах с волнистым сильнорасчлененным рельефом, с разнообразными почвообразующими породами и неоднородным почвенным покровом один смешанный образец берут с площади 1 - 3 га, в лесостепной и степной зонах в условиях расчлененного рельефа 3 - 6 га, в степных районах с равнинным и слаборасчлененным рельефом и однородным почвенным покровом 5 - 10 га. В хозяйствах или севооборотах с очень, интенсивным применением удобрений (посевы ценных технических культур, виноградники, чайные плантации) частоту взятия образцов увеличивают в 1,5 раза. Смешанный почвенный образец составляют из 20 почвенных индивидуальных проб, которые отбирают буром. Удобнее пользоваться для этих целей буром-тростью. Скважины располагают, как правило, по диагонали участка. Почвенные образцы тщательно перемешивают и из смеси берут средний образец массой 300--350г. Смешанные почвенные образцы необходимо отбирать с преобладающей на участке почвенной разности. Если их две, нужно брать два смешанных образца. При значительной комплексности почв, чередовании пятен разных типов и подтипов, образование которых связано с элементами микрорельефа, смешанные образцы (по два-три) составляют из проб, взятых отдельно с этих типов и разностей. Каждый смешанный образец помещают в отдельную коробку или мешочек. Туда же вкладывают этикетку (6 ? 5 см), на которой указывают наименование хозяйства, место взятия образца (поле, севооборот), культуру, номер образца, глубину его взятия, дату и ставят подпись. Одновременно в дневнике указывают особенности почвенного покрова, состояние посевов, микрокомплексность и другие особые условия. Отобранные в поле смешанные образцы немедленно просушивают в затемненном от солнца и проветриваемом помещении. Просушенные образцы вместе с этикеткой отправляют в лабораторию для анализа. /4/

Контроль обеспеченности почв питательными элементами для растений составляет задачу агрохимического мониторинга. Единая государственная агрохимическая служба была создана в нашей стране в 1964 году. Она входила в систему агрономического обслуживания сельскохозяйственных предприятий и имела многочисленные функции. За короткий срок было создано 197 зональных агрохимических лабораторий, представлявших собой научно-производственные учреждения, оснащенные необходимым оборудованием для полевых и лабораторных исследований, картографических работ, постановки полевых опытов с удобрениями, контроля качества урожая и т. д. В их компетенции было проведение регулярного агрохимического обследования земель колхозов и совхозов, разработка рекомендаций по рациональному применению удобрений, т. е. фактически это было плановое проведение мониторинговых исследований.

В настоящее время эта служба преобразована и на основе зональных агрохимических лабораторий созданы государственные центры агрохимической службы. Эти организации проводят контроль обеспеченности почв подвижными формами азота, фосфора и калия, микроэлементами, мониторинг гумусного состояния.

Для целей агрохимического мониторинга были разработаны, апробированы и унифицированы методы определения содержания элементов питания в почве. Большинство этих методов зарегистрировано в форме государственных стандартов (ГОСТов), что позволило получать сравнимые результаты.

Методы определения показателей отдельных свойств дифференцированы для почв разных типов. Например, содержание подвижного фосфора определяется одним из трех методов: Кирсанова (для кислых почв, ГОСТ 26207), Чирикова (для дерново-подзолистых и серых лесных почв, некарбонатных черноземов, ГОСТ 26204), Мачигина (для карбонатных почв, ГОСТ 26205). Так как оценка плодородия почв проводится на основе их комплексной характеристики, то сведения о содержании подвижных соединений элементов питания дополняются данными об их общем содержании в почве. На основе полученных результатов проводится оценка почв по содержанию основных элементов питания - азота, фосфора и калия (табл. 10.10- 10.13). С учетом группировки по содержанию подвижных форм азота, фосфора и калия составляются картограммы обеспеченности почв элементами питания, которые служат основой для рациональной корректировки уровня эффективного плодородия внесением удобрений.

Важным этапом агрохимического мониторинга является выполнение балансовых расчетов с учетом выноса химических элементов с урожаем. На основе этого рассчитываются дозы минеральных и органических удобрений для восполнения выноса элементов питания растений и поддержки эффективного плодородия почв на необходимом уровне.


В последнее время ведется разработка многоэлементной диагностики минерального питания растений. Этот вид диагностики предполагает учитывать не только обеспеченность растений N, Р, К, но и соотношение между основными элементами питания и микроэлементами, характеризующее сбалансированность элементов питания в почвенной среде. Агрохимический мониторинг включает и контроль гумусного состояния почв.

На современном этапе в задачи государственных центров агрохимической службы входит и оценка загрязнения пахотных земель тяжелыми металлами, в связи с чем параллельно с агрохимическим картированием проводится крупномасштабное картографирование почв с целью их эколого-токсикологической оценки на содержание тяжелых металлов, мышьяка и фтора. Оценка проводится в соответствии с уровнями ПДК и ОДК этих элементов для почв. Обследование земель с целью оценки загрязнения проводится с 1991 года в подразделениях агрохимслужбы.

Результаты показали, что в настоящее время в Российской Федерации в ряде регионов наблюдается загрязнение почв тяжелыми металлами. Установлено, что в пахотных почвах Астраханской, Брянской, Волгоградской, Воронежской, Иркутской, Калининградской, Костромской, Курганской, Ленинградской, Московской, Нижегородской, Оренбургской, Самарской, Свердловской, Сахалинской, Ульяновской областях, Республики Бурятия, Мордовии, Красноярского и Приморского краев наблюдается превышение ПДК по трем и более элементам. Загрязнение почв происходит преимущественно медью (3,8 % площадей имеют загрязнение выше ПДК), кобальтом (1,9 %), свинцом (1,7 %), кадмием и хромом (0,6 %).

В пахотных почвах Владимирской, Тверской, Ярославской, Кировской, Тамбовской, Ростовской, Пензенской, Саратовской, Омской, Томской, Тюменской, Читинской, Амурской областей РФ, Республики Тува, Кабардино- Балкарии, Татарстана, Калмыкии, Краснодарского края превышение ПДК металлов не обнаружено.

ВИДЫ УНИВЕРСАЛЬНОГО ПОЧВЕННОГО ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА