Вода, водяной пар и его свойства. Что такое водяной пар

Водяной пар получают в паровых котлах при постоянном давлении и постоянной температуре. Сначала происходит нагрев воды до температуры кипения(она остается постоянной) или температурой насыщения. . При дальнейшем нагреве кипящая вода превращается в пар и ее температура до полного испарения воды остается постоянной. Кипение есть процесс парообразования во всем объеме жидкости. Испарение - па­рообразование с поверхности жидкости.

Переход вещества из жидкого состояния в газообразное называется парообразованием , а из газообразного состояния в жидкое конденсацией . Количество теплоты, которое необходимо сообщить воде для превра­щения ее из жидкого состояния в парообразный при температуре кипения, называется теплотой испарения .

Количество теплоты необходимое для нагрева 1 кг воды на 1 0 С назы­вается теплоемкостью воды . = 1 ккал/кг. град.

Температура кипения воды зависит от давления (имеются специальные таблицы):

Р абс = 1 кгс/см 2 = 1 атм, t к = 100°С

Р абс = 1,7 кгс/см 2 , t к = 115°С

Р абс = 5 кгс/см 2 , t к = 151°С

Р абс =10 кгс/см 2 , t к = 179°С

Р абс = 14 кгс/см 2 , t к = 195°С

При температуре воды в котельных на выходе 150°С и обратной t во-

ды 70°С каждый кг воды переносит 80 ккал теплоты.

В системах пароснабжения 1 кг воды превращенный в пар переносна около 600 ккал теплоты.

Вода практически не сжимается. Наименьший объем занимает при t= +4°С. При t выше и ниже +4°С объем воды увеличивается. Температура, при которой начинается конденсация избыточного кол-ва водяных паров называется t «точки росы».

Различают пар насыщенный и перегретый. При испарении часть молекул вылетает с поверхности жидкости и образуют над ней пар. Если поддерживать температуру жидкости постоянной, т. е. непрерывно подво­дить к ней теплоту, то число вылетающих молекул будет наростать, при этом из-за хаотичного движения молекул пара, одновременно с образова­нием пара происходит обратный процесс - конденсация при которой часть молекул пара возвращается в жидкость.

Если испарение происходит в закрытом сосуде, то количество пара будет увеличиваться до тех пор, пока не наступит равновесие, т. е. коли­чество жидкости и пара станет постоянным.

Пар, находящийся в динамическом равновесии со своей жидкостью и имеющий одинаковые с ней температуру и давление, называется насыщен­ным паром.

Влажным насыщенным паром , называется пар, в котором имеются ка­пельки котловой воды; насыщенный пар, неимеющий капелек воды назы­вается сухим насыщенным паром .

Доля сухого насыщенного пара во влажном паре называется степенью сухости пара (x). При этом влажность пара будет равна 1 - х. Для сухого насыщенного пара х = 1. Если сообщать теплоту сухому насыщенному па­ру при постоянном давлении, то получается перегретый пар. Температура перегретого пара выше температуры котловой воды. Получают перегретый пар из сухого насыщенного пара в пароперегревателях, которые устанав­ливаются в газоходах котла.



Применение влажного насыщенного пара не желательно, т. к. при его перемещении по паропроводам возможны гидравлические удары (резкие толчки внутри труб) конденсата, скапливающегося в арматуре, на закруг­лениях и в пониженных местах паропроводов, а также в паровых насосах. Очень опасно резкое снижение давления в паровом котле до атмосферного которое может произойти в результате аварийного нарушения прочности котла, т. к. температура воды до такого изменения давления была выше 100°С, то избыточное количество тепла расходуется на парообразование, которое происходит практически мгновенно. Количество пара резко воз­растает что приводит к мгновенному повышению давления в котле и к серьезным разрушениям. Чем больше объем воды в котле и выше ее тем­пература, тем значительнее последствия таких разрушений. Объем пара в 1700 раз больше объема воды.

Перегретый пар- пар имеющий более высокую температуру, чем насыщенный при том же давлении - влаги не имеет. Перегретый пар получают в специальном устройстве- пароперегревателе, где сухой насыщенный пар нагревается дымовыми газами. В отопительных котельных перегретый пар не используется,поэтому нет пароперегревателя.

Основные свойства насыщенного пара:

1) t насыщ. пара = t кип. воды при данном Р

2) t кип. воды зависит от Рпара в котле



3) насыщенный пар конденсируется.

Основные свойства перегретого пара:

1) перегретый пар на конденсируется

2) t перегретого пара не зависит от давления пара в котле.

(Схема получения пара в паровом котле)(карт на стр 28 не обязательно)

Для окружающей нас природы водяной пар имеет огромное значение. Он присутствует в атмосфере, используется в технике, служит неотъемлемой составной частью процесса происхождения и развития жизни на Земле.

В учебниках физики говорится, что водяной пар - это Его может наблюдать каждый, поставив чайник на огонь. Через некоторое время из его носика начинает вырываться струя пара. Обусловлено такое явление тем, что вода может находиться в разных, как определяют физики, агрегатных состояниях - газообразном, твердом, жидком. Такие свойства воды и объясняют ее всеобъемлющее присутствие на Земле. На поверхности - в жидком и твердом состоянии, в атмосфере - в газообразном.

Такое свойство воды и последовательный переход ее в разные состояния создают в природе. Жидкость испаряется с поверхности, поднимается в атмосферу, переносится в другое место в виде водяного пара и там выпадает в виде дождя, обеспечивая необходимой влагой новые места.

По сути дела, работает своеобразная паровая машина, источником энергии для которой является Солнце. При рассмотренных процессах водяной пар дополнительно обогревает планету благодаря отражению им теплового излучения Земли обратно к поверхности, вызывая парниковый эффект. Если бы не было такой своеобразной «подушки», то температура на поверхности планеты была бы на 20°С ниже.

В качестве подтверждения изложенного можно вспомнить о солнечных днях зимой и летом. В теплое время года высокая, и атмосфера, как в парнике, согревает Землю, зимой же в солнечную погоду бывают порой самые значительные холода.

Как и все газы, водяной пар обладает определенными свойствами. Одним из параметров, определяющим таковые, будет плотность водяного пара. По определению, это количество водяного пара, содержащегося в одном кубическом метре воздуха. По сути, так определяется последнего.

Количество в воздухе воды постоянно меняется. Оно зависит от температуры, от давления, местности. Содержание влаги в атмосфере - чрезвычайно важный для жизни параметр, и за ним постоянно наблюдают, для чего пользуются специальными приборами - гигрометром и психрометром.

Изменение влажности вызвано тем, что содержание воды в окружающем пространстве изменяется из-за процессов испарения и конденсации. Конденсация - это явление, обратное испарению, в данном случае пар начинает превращаться в жидкость, и она выпадает на поверхность.

При этом в зависимости от окружающей температуры может образоваться туман, роса, иней, гололед.

Когда теплый воздух, воды, соприкасается с холодной землей, образуется роса. В зимнее время, при отрицательных температурах, будет образовываться иней.

Немного другой эффект происходит, когда приходит холодный, или начинает охлаждаться нагретый за день воздух. В этом случае образуется туман.

Если температура поверхности, на которую конденсируется пар, отрицательная, то возникает гололед.

Таким образом, многочисленные природные явления, такие, как туман, роса, иней, гололед, обязаны своим образованием водяному пару, содержащемуся в атмосфере.

В этой связи стоит упомянуть об образовании облаков, которые тоже самым непосредственным образом участвуют в формировании погоды. Вода, испаряясь с поверхности и превращаясь в водяной пар, поднимается вверх. При достижении высоты, где начинается конденсация, она превращается в жидкость, и происходит образование облаков. Они могут быть нескольких типов, но в свете рассматриваемого вопроса важно, что они участвуют в создании парникового эффекта и переносе влаги в новые места.

В изложенном материале показано, что собой представляет водяной пар, описано его влияние на жизненные процессы, происходящие на Земле.

Испарение — это испарившееся и поступившее в воздух количество водяного пара. Скорость испарения зависит от многих причин, но главным образом от температуры воздуха и ветра. Понятно, что чем выше температура, тем больше испарение. Но , постоянно перемещая насыщенный водяными парами воздух, приносит в данное место новые и новые объемы сухого воздуха. Даже слабый ветер скоростью 2-3 м/с увеличивает испарение в три раза. На испарение влияют также характер , растительный покров и т.д.

Однако из-за недостатка влаги в данной местности испарение бывает значительно меньше, чем могло бы быть при данных условиях. Количество воды, которое могло бы испариться при данных условиях, называется испаряемостью. Иначе говоря, испаряемость — это потенциально возможное испарение в данной местности, которое чаще всего определяется с помощью испарителя или по показателям испарения с открытой водной поверхности крупного естественного (пресноводного) водоема или с избыточно увлажненной почвы.

Испаряемость, как и испарение, выражается в миллиметрах слоя испарившейся воды (мм); за конкретный период — мм/год и т.д.

На земной поверхности постоянно происходят два противоположно направленных процесса: местности осадками и осушение ее испарением. Но степень увлажнения территории обусловливается соотношением осадков и испарения. Увлажнение территории характеризуется коэффициентом увлажнения (К), под которым понимается отношение суммы осадков (Q) к испаряемости (И): К = (если К выражается в долях единицы — дробью) и К = 100% (если в процентах). Например, в европейской осадков выпадает 300 мм, а испаряемость только 200 мм, т.е. осадки превосходят испаряемость в 1,5 раза; коэффициент увлажнения равен 1,5, или 150%.

Увлажнение бывает избыточным, когда К > 1, или > 100%; нормальным, когда К = 1, или 100%; недостаточным, когда К < 1, или < 100%. По степени увлажнения выделяют влажные (гумидные) и сухие (аридные) территории. Коэффициент увлажнения характеризует условия , развитие и другое. он равен примерно 1,0-1,5, в 0,6-1,0, в 0,3-0,6, 0,1-0,3, пустынях менее 0,1.

Абсолютной влажностью (а) называется фактическое количество водяных паров в воздухе в данный момент, измеряемое в г/м 3 . Отношение абсолютной влажности к максимальной, выраженное в процентах, называется относительной влажностью (f), т.е. f =100%. Воздух, имеющий максимальную влажность, называется насыщенным. В отличие от него ненасыщенный воздух еще обладает способностью поглощать водяные пары. Однако при нагревании насыщенный воздух становится ненасыщенным, а в случае охлаждения — перенасыщенным. В последнем случае начинается . Конденсация — это сгущение избыточных водяных паров и переход их в жидкое состояние, образование мельчайших капелек воды. Как насыщенный, так и ненасыщенный воздух может стать перенасыщенным во время поднятия , так как при этом она сильно охлаждается. Охлаждение возможно также при выхолаживании почвы в данном месте и при проникновении теплого воздуха в холодную местность.

Конденсация может происходить не только в воздухе, но и на земной поверхности, на ралличных предметах. В этом случае в зависимости от условий образуются роса, иней, туман, гололед. Роса и иней образуются при ясной и тихой ночью, преимущественно в предутренние часы, когда поверхность Земли и ее объекты выхолаживаются. Тогда на их поверхности конденсируется влага из воздуха. При этом при отрицательных температурах образуется иней, при положительных — роса. В случае, если на теплую поверхность приходит холодный воздух или теплый воздух резко охлаждается, может образоваться туман. Он состоит из мельчайших капелек, или кристалликов, как бы взвешенных в воздухе. В сильно загрязненном воздухе образуется туман или дымка с примесью дыма — смог. При выпадении переохлажденных капелек дождя или на охлажденную ниже 0°С поверхность и при от 0 до -3°С образуется слой плотного льда, нарастающего на поверхности земли и на предметах, преимущественно с наветренной стороны, — гололед. Это происходит от намерзания переохлажденных капель дождя, тумана, или мороси. Корка льда может достичь толщины нескольких сантиметров и превратиться в настоящее бедствие: она становится опасной для пешеходов, транспортных средств, обламывает сучья деревьев, обрывает провода и т.д.

Иные причины обусловливают явление, которое называется . Гололедица возникает как правило, после оттепели или дождя в результате наступления похолодания, когда температура резко опускается ниже 0°С. Происходит замерзание мокрого снега, дождя или мороси. Гололедица образуется и тогда, когда эти жидкие осадки выпадают на сильно переохлажденную поверхность земли, что также обусловливает их замерзание. Таким образом гололедица — это лед на земной поверхности, образовавшийся в результате замерзания мокрого снега или жидких осадков.

Образуются при конденсации водяного пара в поднимающемся воздухе вследствие его охлаждения. Высота их образования зависит от температуры и относительной влажности воздуха. При достижении им высоты, на которой насыщение станет полным, — уровня конденсации — начинается конденсация и облакообразование. Облака находятся в постоянном движении и могут состоять из мелких капелек или кристалликов, но чаще они смешанные. По форме различают три основных вида облаков: перистые, слоистые и кучевые. Перистые — облака верхнего яруса (выше 6000 м), полупрозрачные и состоят из мелких ледяных кристалликов. Осадки из них не выпадают. Слоистые — облака среднего (от 2000 до 6000 м) и нижнего (ниже 2000 м) ярусов. В основном они и дают осадки, обычно длительные, обложные. Кучевые облака могут образовываться в нижнем ярусе и достигать очень большой высоты. Часто они имеют вид башен и состоят внизу из капелек, а вверху — из кристалликов. С ними связаны ливни, град,

До настоящего времени объектом наших исследований были идеальные газы, т.е. такие газы, где отсутствуют силы межмолекулярных взаимодействий и пренебрегается размерами молекул. На самом деле размеры молекул и силы межмолекулярных взаимодействий имеют большое значение, особенно при низких температурах и больших давлениях.

Одним из представителей реальных газов, применяемых в практике пожарного дела и широко применяемых в промышленном производстве, является водяной пар.

Водяной пар чрезвычайно широко применяется в различных отраслях промышленности, главным образом в качестве теплоносителя в теплообменных аппаратах и как рабочее тело в паросиловых установках. Это объясняется повсеместным распространением воды, ее дешевизной и безвредностью для здоровья человека.

Имея высокое давление и относительно низкую температуру, пар, используемый на практике близок к состоянию жидкости, поэтому пренебрегать силами сцепления между его молекулами и их объемом, как в идеальных газах, нельзя. Следовательно, не представляется возможным использовать для определения параметров состояния водяного пара уравнения состояния идеальных газов, т. е. для пара pv≠RT, ибо водяной пар есть реальный газ.

Попытки ряда ученых (Ван-дер-Ваальса, Бертло, Клаузиуса и др.) уточнить уравнения состояния реальных газов путем введения поправок в уравнение состояния для идеальных газов не увенчались успехом, так как эти поправки относились только к объему и силам сцепления между молекулами реального газа и не учитывали ряда других физических явлений, происходящих в этих газах.

Особую роль играет уравнение, предложенное Ван-дер-Ваальсом в 1873 г., (P + a/ v 2)( v - b) = RT . Являясь приближенным при количественных расчетах, уравнение Ван-дер-Ваальса качественно хорошо отображает физические особенности газов, так как позволяет описать общую картину изменения состояния вещества с переходом его в отдельные фазовые состояния. В этом уравнении а и в для данного газа являются постоянными величинами, учитывающими: первая - силы взаимодействия, а вторая - размер молекул. Отношение а/v 2 характеризует добавочное давление, под которым находится реальный газ вследствие сил сцепления между молекулами. Величина в учитывает уменьшение объема, в котором движутся молекулы реального газа, вследствие того, что они сами обладают объемом.

Наиболее известны в настоящее время уравнение, разработанное в 1937-1946 гг. американским физиком Дж. Майером и независимо от него советским математиком Н. Н. Боголюбовым, а также уравнение предложенное советскими учеными М. П. Вукаловичем и И. И. Новиковым в 1939 г.

Ввиду громоздкости эти уравнения рассматриваться не будут.


Для водяного пара все параметры состояния для удобства пользования сведены в таблицы и представлены в приложении 7.

Итак, водяным паром называется получающийся из воды реальный газ с относительно высокой критической температурой и близкий к состоянию насыщения.

Рассмотрим процесс превращения жидкости в пар, называемый иначе процессом парообразования . Жидкость может превращаться в пар при испарении и кипении.

Испарением называется парообразование, происходящее только с поверхности жидкости и при любой температуре . Интенсивность испарения зависит от природы жидкости и ее температуры. Испарение жидкости может быть полным, если над жидкостью находится неограниченное пространство. В Природе процесс испарения жидкости осуществляется в гигантских масштабах в любое время года.

Суть процесса испарения заключается в том, что отдельные молекулы жидкости, находящиеся у ее поверхности и обладающие большей по сравнению с другими молекулами кинетической энергией, преодолевая силовое действие соседних молекул, создающее поверхностное натяжение, вылетают из жидкости в окружающее пространство. С увеличением температуры интенсивность испарения возрастает, так как увеличиваются скорость и энергия молекул и уменьшаются силы их взаимодействия. При испарении температура жидкости снижается, так как из нее вылетают молекулы, обладающие сравнительно большими скоростями, вследствие чего уменьшается средняя скорость оставшихся в ней молекул.

При сообщении жидкости теплоты повышаются ее температура и интенсивность испарения. При некоторой вполне определенной температуре, зависящей от природы жидкости и давления, под которым она находится, начинается парообразование во всей ее массе . При этом устенок сосуда и внутри жидкости образуются пузырьки пара. Это явление называется кипением жидкости. Давление получающегося при этом пара такое же, как и среды, в которой происходит кипение.

Процесс, обратный парообразованию называется конденсацие й . Этот процесс превращения пара в жидкость так же происходит при постоянной температуре, если давление остается постоянным. При конденсации хаотично движущиеся молекулы пара, соприкасаясь с поверхностью жидкости попадают под влияние межмолекулярных сил воды, остаются там, вновь преобразуясь в жидкость. Т.к. молекулы пара имеют большую по сравнению с молекулами жидкости скорость, то при конденсации температура жидкости увеличивается. Жидкость, образующаяся при конденсации пара, называется конденсатом .

Рассмотрим процесс парообразования более подробно.

Переход жидкости в пар имеет три стадии:

1. Нагревание жидкости до температуры кипения.

2. Парообразование.

3. Перегрев пара.

Остановимся на каждой стадии более подробно.

Возьмём цилиндр с поршнем, поместим туда 1 кг воды при температуре 0°С, условно принимая, что удельный объём воды при этой температуре минимален 0.001 м 3 /кг. На поршень положен груз, который вместе с поршнем оказывает на жидкость постоянное давление Р. Этому состоянию соответствует точка 0. Начнём подводить к этому цилиндру тепло.

Рис. 28. График изменения удельного объёма парожидкостной смеси при давлении насыщения P s .

1. Процесс подогрева жидкости . В этом процессе, осуществляемом при постоянном давлении за счёт теплоты, сообщаемой жидкости, происходит её нагрев от 0 °С до температуры кипения t s . Т.к. вода имеет сравнительно небольшой коэффициент термического расширения, то удельный объём жидкости изменится незначительно и увеличится от v 0 до v¢. Этому состоянию соответствует точка 1, а процессу – отрезок 0-1.

2. Процесс парообразования . При дальнейшем подводе тепла вода будет кипеть и переходить в газообразное состояние, т.е. водяной пар. Этому процессу соответствует отрезок 1-2 и увеличение удельного объёма от v¢ до v¢¢. Процесс парообразования происходит не только при постоянном давлении, но и при постоянной температуре, равной температуре кипения. При этом вода в цилиндре будет находиться уже в двух фазах: пара и жидкости. Вода присутствует в виде жидкости, сосредоточенной внизу цилиндра и в виде мельчайших капелек, равномерно распределённой по всему объёму.

Процесс парообразования сопровождается и обратным процессом, называемым конденсацией. Если скорость конденсации станет равной скорости испарения, то в системе наступает динамическое равновесие. Пар в этом состоянии имеет максимальную плотность и называется насыщенным. Следовательно, под насыщенным понимают пар, находящийся в равновесном состоянии с жидкостью, из которой он образуется . Основное свойство этого пара состоит в том, что он имеет температуру, являющуюся функцией его давления, одинакового с давлением той среды, в которой происходит кипение. Поэтому температура кипения иначе называется температурой насыщения и обозначается t н.Давление, соответствующее t н, называется давлением насыщения (обозначается р н или просто p. Пар образуется до тех пор, пока не испарится последняя капля жидкости. Этому моменту будет соответствовать состояние сухого насыщенного (или просто сухого ) пара. Пар, получаемый при неполном испарении жидкости, называется влажным насыщенным паром или просто влажным . Он является смесью сухого пара с капельками жидкости, распространенными равномерно во всей его массе и находящимися в нем во взвешенном состоянии. Массовая доля сухого пара во влажном паре называется степенью сухости или массовым паросодержанием и обозначается через х. Массовая доля жидкости во влажном паре называется степенью влажности и обозначается через у. Очевидно, что у = 1 - х. Степень сухости и степень влажности выражают или в долях единицы, или в %: например, если х = 0.95 и у = 1 - х = 0.05, то это означает, что в смеси находится 95% сухого пара и 5% кипящей жидкости.

3. Перегрев пара. При дальнейшем подводе тепла температура пара будет повышаться (соответственно увеличивается удельный объём от v¢¢ до v¢¢¢). Этому состоянию соответствует отрезок 2-3. Если температура пара выше температуры насыщенного пара того же давления, то такой пар называется перегретым . Разность между температурой перегретого пара и температурой насыщенного пара того же давления называется степенью перегрев а .

Поскольку удельный объем перегретого пара больше удельного объема насыщенного пара (так как р= const, t пер > t н), то плотность перегретого пара меньше плотности насыщенного пара. Поэтому перегретый пар является ненасыщенным. По своим физическим свойствам перегретый пар приближается к газам и тем больше, чем выше степень его перегрева.

Из опыта найдены положения точек 0 - 2 при других, более высоких давлениях насыщения. Соединив соответствующие точки при различных давлениях, получим диаграмму состояния водяного пара.


Рис. 29. pv – диаграмма состояния водяного пара.

Из анализа диаграммы видно, что по мере увеличения давления удельный объём жидкости уменьшается. На диаграмме этому уменьшению объёма с ростом давления соответствует линия СД. Температура насыщения, и, следовательно, удельный объём увеличиваются, что и продемонстрировано линией АК. Также быстрее происходит испарение воды, что ясно видно из линии ВК. При увеличении давления уменьшается разность между v¢ и v¢¢, постепенно сближаются линии АК и ВК. При некотором вполне определённом для каждого вещества давлении эти линии сходятся в одной точке К, называемой критической. Точка К, одновременно принадлежащая линии жидкости при температуре кипения АК и линии сухого насыщенного пара ВК, соответствует некоторому предельному критическому состоянию вещества, при котором отсутствует различие между паром и жидкостью. Параметры состояния называются критическими и обозначаются Т к, P к, v к. Для воды критические параметры имеют значения: Т к =647.266К, Р к = 22.1145МПа, v к =0.003147 м 3 /кг.

Состояние, в котором могут находиться в равновесии все три фазы воды, называется тройной точкой воды. Для воды: Т 0 = 273.16К, Р 0 = 0.611 кПа, v 0 = 0.001 м 3 /кг. В термодинамике удельные энтальпия, энтропия и внутренняя энергия в тройной точке принимается равной нулю, т.е. i 0 = 0, s 0 = 0, u 0 = 0.

Определим основные параметры водяного пара

1. Подогрев жидкости

Количество теплоты, необходимое для нагревания 1 кг жидкости от 0 °С до температуры кипения называется удельнойтеплотой жидкости . Теплота жидкости является функцией давления, принимающей максимальное значение при критическом давлении.

Величина её определяется:

q = с р (t s -t 0) ,

где с р – средняя массовая изобарная теплоёмкость воды в интервале температур от t 0 = 0 °С до t s , берётся по справочным данным

т.е. q = с р t s

Удельная теплота измеряется в Дж/кг

Величина q выражается как

где i¢ - энтальпия воды при температуре кипения;

i - энтальпия воды при 0 °С.

Согласно первому закону термодинамики

i = u 0 + P s v 0 ,

где u 0 – внутренняя энергия при 0 °С.

i¢ = q + u 0 + P s v 0

Примем условно, как и в случае идеальных газов, что u 0 = 0. Тогда

i¢ = q + P s v 0

Эта формула позволяет вычислить величину i¢ по найденным из опыта величинам Р s , v 0 и q.

При невысоких давлениях Р s , когда для воды величина Р s v 0 мала по сравнению с теплотой жидкости, можно приближённо принять

Теплота жидкости с увеличением давления насыщения увеличивается и в критической точке достигает максимальной величины. Учитывая, что i=u+ Pv (1), можно написать следующее выражение для внутренней энергии воды при температуре кипения:

u¢ = i¢ + P s v¢

Изменение энтропии в процессе подогрева жидкости


Допуская, что энтропия воды при 0


Эта формула позволяет вычислить энтальпию жидкости при температуре кипения.

2. Парообразование

Количество теплоты, необходимое для перевода 1 кг жидкости, нагретой до температуры кипения, в сухой насыщенный пар в изобарном процессе называется удельной теплотой парообразования (r) .

Теплота парообразования определяется:

i¢¢ = r + i¢ по найденной из опыта теплоте парообразования и энтальпии воды при температуре кипения i¢. Учитывая (1), можно записать:

r = (u¢¢-u¢)+P s (v¢¢-v¢),

где u¢ и u¢¢ - внутренняя энергия воды при температуре кипения и сухого насыщенного пара. Это уравнение показывает, что теплота парообразования состоит из двух частей. Одна часть (u¢¢-u¢) затрачивается на увеличение внутренней энергии образующегося из воды пара. Она называется внутренней теплотой парообразования и обозначается буквой r. Другая часть P s (v¢¢-v¢) затрачивается на внешнюю работу, совершаемую паром в изобарном процессе кипения воды, и называется внешней теплотой парообразования (y).

Теплота парообразования уменьшается с увеличением давления насыщения и в критической точке равна нулю. Теплота жидкости и теплота парообразования образуют полную теплоту сухого насыщенного пара l¢¢.

Внутренняя энергия сухого насыщенного пара u¢¢ равна

u¢¢=i¢¢-P s v¢¢

Изменение энтропии пара в процессе парообразования определяется выражением


Это выражение позволяет определить энтропию сухого насыщенного пара s¢¢.

Влажный насыщенный пар между граничными величинами удельных объёмов v¢ и v¢¢ состоит из сухого насыщенного пара и воды. Количество сухого насыщенного пара в 1 кг влажного насыщенного пара называется степенью сухости , или паросодержанием . Эта величина называется буквой x . Величина (1-x) называется степенью влажности пара .

Если учесть степень сухости, то удельный объём влажного насыщенного пара v x

v x = v¢¢x + v¢(1-x)

Теплота парообразования r x , энтальпия i x , полная теплота l x , внутренняя энергия u x и энтропия s x для влажного насыщенного пара имеет следующие величины:

r x = rx; i x = i¢ + rx; l x = q + rx; u x = i¢ + rx – p s v s ; s x = s¢ + rx/T s

3. Процесс перегрева пара

Сухой насыщенный пар перегревается при постоянном давлении от температуры кипения t s до заданной температуры t ; при этом удельный объём пара увеличивается от до v . Количество теплоты, которое затрачивается на перегрев 1 кг сухого насыщенного пара от температуры кипения до данной температуры, называется теплотой пароперегрева. Теплоту пароперегрева можно определить:


где - с p средняя массовая теплоёмкость пара в интервале температур t s – t (определяется по справочным данным).

Для величины q п можно записать

q п = i – i¢ ,

где I – энтальпия перегретого пара.

При слове "пар", я вспоминаю времена, когда ещё учился в начальных классах. Тогда, приходя из школы домой, родители начинали готовить обед, и ставили кастрюлю с водой на газовую плиту. И уже через десять минут, в кастрюльке начинали появляться первые пузырьки. Этот процесс всегда меня завораживал, мне казалось, что я могу смотреть на это вечно. А потом, через некоторое время после появления пузырьков, начинал идти сам пар. Однажды, я спросил маму: "А откуда идут эти белые тучки?" (Так раньше я их называл). На что она мне отвечала: "Это всё происходит из-за нагрева воды". Хотя ответ и не давал полного представления о процессе возникновения пара, на уроках школьной физики я узнал о паре всё, что хотел. Итак...

Что же есть водяной пар

С научной точки зрения, водяной пар - просто одно из трёх физических состояний самой воды . Он, как известно, возникает при нагревании воды. Как и она сама, пар не имеет ни цвета, ни вкуса, ни запаха. Но не все знают, что клубы пара обладают своим давлением, которое зависит от его объёма. А выражается оно в паскалях (в честь небезызвестного учёного).

Водяной пар окружает нас не только, когда мы варим что-нибудь на кухне. Он постоянно содержится в уличном воздухе и атмосфере. И его процент содержания называется "абсолютной влажностью".


Факты о водяном паре и его особенности

Итак, несколько интересных моментов:

  • чем выше температура , которая действует на воду, тем быстрее идёт процесс испарения;
  • помимо этого, скорость испарения увеличивается с размерами площади поверхности, на которой эта вода находится. Другими словами, если мы начнём нагревать небольшой водный слой на широкой металлической чашке, то испарение пройдет весьма быстро;
  • для жизни растений нужна не только жидкая вода, но и газообразная . Объяснить этот факт можно тем, что с листьев любого растения постоянно идут испарения, охлаждающие его. Попробуйте в знойный день потрогать лист дерева – и вы заметите, что он прохладный;
  • то же самое касается человека, с нами работает та же система, что и с растениями выше. Испарения охлаждают нашу кожу в жаркий день . Удивительно, но даже при небольших нагрузках, наш организм покидает около двух литров жидкости в час. Что уж тут говорить про усиленные нагрузки и знойные летние деньки?

Вот таким образом можно описать сущность пара и его роль в нашем мире. Надеюсь, вы открыли для себя много интересного!