Пластический момент сопротивления при изгибе. Прямоугольное сечение. Практические расчёты на ползучесть

В основе расчета лежит кривая деформирования (рис. 28), представляющая собой зависимость устанавливаемую из опытов на растяжение. конструкционных сталей эта зависимость имеет такой же вид и при сжатии.

Для расчета обычно используют схематизированную диаграмму деформирования, показанную на рис. 29. Первая прямая соответствует упругим деформациям вторая прямая проходит через точки, соответствующие

Рис. 28. Диаграмма деформирования

пределу текучести и пределу прочности . Угол наклона значительно меньше угла а и для расчета вторая прямая иногда представляется горизонтальной линией, как показано на рис. 30 (кривая деформирования без упрочиения).

Наконец, если рассматриваются значительные пластические деформации, то участками кривых, соответствующих упругому деформированию, в практических расчетах можно пренебречь. Тогда схематизированные кривые деформирования имеют вид, показанный на рис. 31

Распределение напряжений изгиба при упругопластических деформациях. Для упрощения задачи рассмотрим стержень прямоугольного сечения и предположим, что кривая деформирования не имеет упрочиения (см. рис. 30).

Рис. 29. Схематизированная кривая деформирования

Рис. 30. Кривая деформирования без упрочнения

Если изгибающий момент таков, что наибольшее напряжение изгиба (рис. 32), то стержень работает в области упругой деформации

При дальнейшем возрастании изгибающего момента в крайних волокнах стержня возникают пластические деформации. Пусть при данном значении пластическими деформациями охвачена область от до . В этой области . При напряжения изменяются по линейному закону

Из условия равновесия момент внутренних сил

Рис. 31. Кривая деформирования при больших пластических деформациях

Рис. 32. (см. скан) Изгиб стержня прямоугольного сечения в упругопластической стадии

Если бы материал оставался упругим при любых напряжениях, то наибольшее напряжение

превышало бы предел текучести материала.

Напряжения при идеальной упругости материала показаны на рис. 32. С учетом пластической деформации напряжения, превосходящие предел текучести для идеально упругого тела, снижаются. Если эпюры распределения напряжений для действительного материала я для идеально упругою материала Сличаются одна от другой (при одних и тех же нагрузках), то в теле после снятия внешней нагрузки возникают остаточные напряжения, эпюра которых представляет собой разность эпюр упомянутых напряжений. В местах наибольших напряжений остаточные напряжения противоположны по знаку напряжениям а рабочих условиях.

Предельный пластический момент. Из формулы (51) следует, что при

величина , т. е. все сечение стержня находится в области пластической деформации.

Изгибающий момент, при котором во всех точках сечения возникают пластические деформации, называют предельным пластически и моментом. Распределение напряжений изгиба по сечению в этом случае показано на рис. 33.

В области растяжения в области сжатия . Так как из условия равновесия то нейтральная линия делит сечение на две равновеликие (по площади) части.

Для прямоугольного сечения предельный пластический момент

Рис. 33. Распределение напряжений при действии предельного пластического момента

Изгибающий момент, при котором возникает пластическая деформация только в крайних волокнах,

Отношение пластического момента сопротивления к обычному (упругому) моменту сопротивления для прямоугольного сечения

Для двутаврового сечеиия при изгибе в плоскости наибольшей жесткости это отношение составляет для тонкостенного трубчатого -1,3; для сплошного круглого сечеиия 1,7.

В общем случае величину при изгибе в плоскости симметрии сечеиия можно определить следующим способом (рис. 34); разбить сечение линией на две равновеликие (по площади) части. Если расстояние между центрами тяжести этих частей обозначить через то

где - площадь поперечного сечения; - расстояние от центра тяжести какой-либо половины сечения до центра тяжести всего сечения (точку О находит на равном расстоянии от точек

  • Виды производства стали, применяемой в металлических конструкциях
  • Сортамент для стальных конструкций
  • Вопрос 5. Влияние различных факторов на свойства стали.
  • Вопрос 6. Виды дефектов кристаллической решетки и механизм разрушения стали. Работа стали при неравномерном распределении напряжений. Работа стали при неравномерном распределении напряжения.
  • Вопрос 7. Алюминиевые сплавы, и их состав, свойства и особенности работы
  • Группы предельных состояний
  • Расчет конструкций по предельным состояниям и сопоставление его с расчетом по допускаемым напряжениям
  • Вопрос 9. Нагрузки, действующие на сооружение. Виды нагрузок. Нормативные и расчетные нагрузки.
  • Вопрос 10. Предельное сопротивление материала. Нормативные и расчетные напряжения. Коэффициенты надежности.
  • Вопрос 11. Виды напряжений и их учет при расчете элементов конструкций. Основные, дополнительные, местные, начальные напряжения. Виды напряжений и их учет при расчете элементов конструкций
  • Вопрос 12. Работа и расчет на прочность центрально растянутых и центрально сжатых элементов. Работа стали на растяжение
  • Работа стали на сжатие
  • Вопрос 13. Работа стали в сложном напряженном состоянии. Учет сложного напряженного состояния при расчете стальных конструкций. Работа стали при сложном напряженном состоянии
  • Вопрос 14. Упруго-пластическая работа стали при изгибе. Шарнир пластичности. Основы расчета изгибаемых элементов. Упруго пластическая работа стали при изгибе. Шарнир пластичности
  • Вопрос 15. Работа стержней при кручении.
  • Вопрос 16. Устойчивость элементов металлических конструкций. Потеря устойчивости центрально-сжатых стержней. Устойчивость элементов металлических конструкций
  • Потеря устойчивости центрально сжатых стержней
  • Вопрос 17. Потеря устойчивости внецентренно сжатых и сжато-изогнутых стержней. Потеря устойчивости внецентренно сжатых стержней
  • Вопрос 18. Потеря устойчивости изгибаемых элементов
  • Вопрос 19. Потеря местной устойчивости элементов металлических конструкций
  • Вопрос 20. Работа стали при повторных нагрузках. Усталостная и вибрационная прочность.
  • Вопрос 21. Расчет элементов стальных конструкций на прочность с учетом хрупкого разрушения (проверка на хладостойкость).
  • Вопрос 22. Сварка. Классификация сварки. Структура сварного шва. Сварные трещины. Термический класс сварки.
  • Вопрос 23. Типы сварных соединений и швов.
  • Вопрос 24. Расчет стыковых и угловых сварных швов. Расчет стыковых сварных швов.
  • Расчет угловых сварных швов
  • Фланговые угловые швы
  • Лобовые угловые швы
  • Вопрос 25. Конструктивные требования к сварным соединениям.
  • Вопрос 26. Основные дефекты сварных швов и виды контроля качества.
  • Вопрос 27. Виды болтов, применяемых в металлических конструкциях. Болтовые соединения. Заклепочные соединения. Болтовые соединения
  • Болты грубой, нормальной точности
  • Болты повышенной точности
  • Высокопрочные болты
  • Анкерные болты
  • Заклепочные соединения
  • Вопрос 28. Расчет болтовых соединений без контролируемого натяжения болтов.
  • Расчет болтов и заклепок на срез.
  • Расчет болтового и заклепочного соединения на смятие.
  • Расчет болтов и заклепок на растяжение
  • Расчет высокопрочных болтов.
  • Вопро 29. Расчет фрикционных соединений на высокопрочных болтах.
  • Вопрос 30. Конструирование болтовых соединений.
  • Вопрос 31. Балки и балочные конструкции. Типы балок и балочных клеток. Балки и балочные конструкции
  • Балочные клетки
  • Вопрос 32. Стальной настил балочных клеток. Основы расчета и конструирования. Расчет прокатных балок. Плоский стальной настил балочных клеток
  • Расчет прокатной балки
  • Вопрос 33. Расчет разрезных составных балок. Компоновка сечения балки. Изменение сечения балки по длине. Проверка прочности балки. Расчет разрезных составных балок
  • Предварительный подбор сечения балки.
  • Компоновка сечения балки
  • Проверка прочности балки
  • Изменение сечения по длине балки
  • Вопрос 34. Проверка общей устойчивости балки. Проверка местной устойчивости поясов и стенки балки от действия нормальных и касательных напряжений. Проверка общей устойчивости балки
  • Проверка местной устойчивости сжатого пояса балки
  • Проверка местной устойчивости стенки балки
  • Вопрос 35. Расчет поясных швов составных балок. Расчет опорного ребра. Расчет монтажного стыка на высокопрочных болтах. Расчет поясных швов.
  • Расчет опорного ребра
  • Расчет монтажного стыка на высокопрочных болтах
  • Вопрос 36. Центрально-сжатые сплошные колонны. Типы сечений. Расчет и конструирование стержня сплошной колонны. Сплошные колонны Типы сечений стержня
  • Расчет стержня колонны
  • Вопрос 37. Центрально-сжатые сквозные колонны. Типы сечений. Типы решеток. Влияние решеток на устойчивость стержня сквозной колонны. Сквозные колонны Типы сечений и соединений ветвей сквозных колонн.
  • Стержень сквозной колонны с планками в двух плоскостях.
  • Стержень сквозной колонны с раскосами в двух плоскостях.
  • Вопрос 38. Расчет и конструирование стержня центрально-сжатой сквозной колонны. Стержень сквозной колонны с планками в двух плоскостях.
  • Стержень сквозной колонны с раскосами в двух плоскостях.
  • Вопрос 39. Расчет безраскосной решетки (планок)
  • Вопрос 40. Конструирование и расчет базы центрально-сжатой сплошной и сквозной колонн. Расчет базы центрально-сжатой колонны
  • Вопрос 41. Оголовки колонн и сопряжения балок с колоннами. Конструирование и расчет оголовка центрально-сжатой сплошной и сквозной колонн. Конструирование и расчет оголовка колонны
  • Вопрос 42. Фермы. Классификация ферм. Компоновка ферм. Элементы ферм. Типы сечений стержней легких и тяжелых ферм.
  • Классификация ферм
  • Компоновка ферм
  • Вопрос 43. Расчет ферм. Определение нагрузок. Определение усилий в стержнях фермы. Расчетные длины стержней ферм. Обеспечение общей устойчивости ферм в системе покрытия. Выбор типа сечения стержней.
  • Расчет ферм
  • Определение усилий в стержнях фермы.
  • Расчетные длины стержней ферм
  • Обеспечение обшей устойчивости ферм в системе покрытия
  • Выбор типа сечения
  • Вопрос 14. Упруго-пластическая работа стали при изгибе. Шарнир пластичности. Основы расчета изгибаемых элементов. Упруго пластическая работа стали при изгибе. Шарнир пластичности

    Напряжение при изгибе в упругой стадии распределяется в сечении по линейному закону. Напряжения в крайних волокнах для симметричного сечения определяются формулой:

    где М – изгибающий момент;

    W - момент сопротивления сечения.

    С увеличением нагрузки (или изгибающего момента М) напряжения будут увеличиваться и достигнут значения предела текучести R yn .

    Ввиду того, что предела текучести достигли только крайние волокна сечения, а соединенные с ними менее напряженные волокна могут еще работать, несущая способность элемента не исчерпана. С дальнейшим увеличением изгибающего момента будет происходить удлинение волокон сечения, однако напряжения не могут быть больше R yn . Предельной эпюрой будет такая, в которой верхняя часть сечения до нейтральной оси равномерно сжата напряжением R yn . Несущая способность элемента при этом исчерпывается, а он может как бы поворачиваться вокруг нейтральной оси без увеличения нагрузки; образуется шарнир пластичности.

    В месте пластического шарнира происходит большое нарастание деформаций, балка получает угол перелома, но не разрушается. Обычно балка теряет при этом либо общую устойчивость, либо местную устойчивость отдельных частей. Предельный момент, отвечающий шарниру пластичности,

    где W пл = 2S – пластический момент сопротивления

    S – cтатический момент половины сечения относительно оси, проходящий через центр тяжести.

    Пластический момент сопротивления, а следовательно предельный момент, отвечающий шарниру пластичности больше упругого. Нормами разрешается учитывать развитие пластических деформаций для разрезных прокатных балок, закрепленных от потери устойчивости и несущих статическую нагрузку. Значение пластических моментов сопротивления при этом принимаются: для прокатных двутавров и швеллеров:

    W пл =1,12W – при изгибе в плоскости стенки

    W пл = 1,2W – при изгибе параллельно полкам.

    Для балок прямоугольного поперечного сечения W пл = 1,5 W.

    По нормам проектирования развития пластических деформаций допускается учитывать для сварных балок постоянного сечения при отношениях ширины свеса сжатого пояса к толщине пояса и высоты стенки к ее толщине .

    В местах наибольших изгибающих моментов недопустимы наибольшие касательные напряжения; они должны удовлетворять условию:

    Если зона чистого изгиба имеет большую протяженность, соответствующий момент сопротивления во избежании чрезмерных деформаций принимается равным 0,5(W yn +W пл).

    В неразрезных балках за предельное состояние принимается образование шарниров пластичности, но при условии сохранения системой своей неизменяемости. Нормами разрешается при расчете неразрезных балок (прокатных и сварных) определять расчетные изгибающие моменты исходя из выравнивания опорных и пролетных моментов (при условии, что смежные пролеты отличаются не больше чем на 20%).

    Во всех случаях, когда расчетные моменты принимаются в предположении развития пластических деформаций (выравнивания моментов), проверку прочности следует производить по упругому моменту сопротивления по формуле:

    При расчете балок из алюминиевых сплавов развитие пластических деформаций не учитывается. Пластические деформации пронизывают не только наиболее напряженное сечение балки в месте наибольшего изгибающего момента, но и распространяются по длине балки. Обычно в изгибаемых элементах кроме нормальных напряжений от изгибающего момента есть еще и касательное напряжение от поперечной силы. Поэтому условие начала перехода металла в пластическое состояние в этом случае должно определяться приведенными напряжениями  че d:

    Как уже отмечалось, начало текучести в крайних фибрах (волокнах) сечения еще не исчерпывает несущие способности изгибаемого элемента. При совместном действии  и  предельная несущая способность примерно на 15% выше чем при упругой работе, и условие образования шарнира пластичности записывается в виде:

    При этом должно быть .

    "
  • Mbt = Wpl Rbt,ser - обычная формула сопромата, в которую только внесена поправка на неупругие деформации бетона растянутой зоны: Wpl - упруго-пластический момент сопротивления приведенного сечения. Его можно определить по формулам Норм или из выражения Wpl = gWred , где Wred - упругий момент сопротивления приведенного сечения для крайнего растянутого волокна (в нашем случае - нижнего), g = (1,25...2,0) - зависит от формы сечения и определяется по таблицам справочников. Rbt,ser - расчетное сопротивление бетона растяжению для предельных состояний 2-й группы (численно равное нормативному Rbt, n ).

    153. Почему неупругие свойства бетона увеличивают момент сопротивления сечения?

    Рассмотрим простейшее прямоугольное бетонное (без арматуры) сечение и обратимся к рис.75,в, на котором показана расчетная эпюра напряжений накануне образования трещин: прямоугольная в растянутой и треугольная в сжатой зоне сечения. По условию статики равнодействующие усилий в сжатой Nb и в растянутойNbt зонах равны между собой, значит равны и соответствующие площади эпюр, а это возможно, если напряжения в крайнем сжатом волокне вдвое больше растягивающих: s b= 2Rbt, ser . Равнодействующие усилий в сжатой и растянутой зонах Nb = = Nbt = Rbt, ser bh / 2, плечо между ними z = h / 4 + h / 3 = 7h / 12. Тогда момент, воспринимаемый сечением, равен M = Nbtz = (Rbt, ser bh/ 2)(7h/ 12)= = Rbt, ser bh 27/ 24 = Rbt, ser (7/4)bh 2/6, или M = Rbt, ser 1,75 W . То есть, для прямоугольного сечения g = 1,75. Таким образом, момент сопротивления сечения возрастает благодаря принятой в расчете прямоугольной эпюре напряжений в растянутой зоне, вызванной неупругими деформациями бетона.

    154. Как рассчитывают нормальные сечения по образованию трещин при внецентренном сжатии и растяжении?

    Принцип расчета тот же, что и при изгибе. Нужно только помнить, что моменты продольных сил N от внешней нагрузки принимают относительно ядровых точек (рис. 76, б, в):

    при внецентренном сжатии Мr = N (eo - r ), при внецентренном растяжении Мr = N (eo + r ). Тогда условие трещиностойкости принимает вид: Mr ≤ Mcrc = Mrp + Mbt - то же, что и при изгибе. (Вариант центрального растяжения рассмотрен в вопросе 50.) Напомним, что отличительной особенностью ядровой точки является то, что приложенная в ней продольная сила вызывает на противоположной грани сечения нулевые напряжения (рис. 78).

    155. Может ли трещиностойкость железобетонного изгибаемого элемента быть выше его прочности?

    В практике проектирования действительно встречаются случаи, когда по расчету Mcrc > Mu . Чаще всего подобное происходит в преднапряженных конструкциях с центральным армированием (сваях, дорожных бортовых камнях и т.п.), которым арматура требуется только на период перевозки и монтажа и у которых она расположена по оси сечения, т.е. вблизи нейтральной оси. Объясняется это явление следующими причинами.

    Рис. 77, Рис. 78

    В момент образования трещины растягивающее усилие в бетоне передается арматуре при соблюдении условия: Mcrc= Nbt z1 = Ns z2 (рис. 77) – для простоты рассуждений работа арматуры до образования трещины здесь не учтена. Если окажется, что Ns = Rs As Nbt z1 / z2 , то одновременно с образованием трещин происходит и разрушение элемента, что подтверждается многочисленными экспериментами. Для некоторых конструкций такая ситуация может оказаться чреватой внезапным обрушением, поэтому Нормы проектирования в этих случаях предписывают увеличить на 15 % площадь сечения арматуры, если она подобрана расчетом по прочности. (Кстати, именно подобные сечения в Нормах именуются «слабо армированными», что вносит некоторую путаницу в давно устоявшуюся научно-техническую терминологию.)

    156. В чем особенность расчета нормальных сечений по образованию трещин в стадии обжатия, транспортировки и монтажа?

    Все зависит от того, трещиностойкость какой грани проверяют и какие при этом действуют усилия. Например, если при перевозке балки или плиты подкладки находятся на значительном расстоянии от торцов изделия, то в опорных сечениях действует отрицательный изгибающий момент Мw от собственного веса qw (с учетом коэффициента динамичности kД = 1,6 - см. вопрос 82). Сила обжатия Р1 (с учетом первых потерь и коэффициента точности натяжения gsp > 1) создает момент того же знака, поэтому ее рассматривают как внешнюю силу, которая растягивает верхнюю грань (рис.79), и при этом ориентируются на нижнюю ядровую точку r ´. Тогда условие трещиностойкости имеет вид:

    Мw + P1 (eop - r ´ )≤ Rbt,ser W ´pl , где W ´pl - упруго-пластический момент сопротивления для верхней грани. Заметим еще, что величина Rbt,ser должна соответствовать передаточной прочности бетона.

    157. Влияет ли наличие начальных трещин в зоне, сжатой от внешней нагрузки, на трещиностойкость растянутой зоны?

    Влияет, причем отрицательно. Начальные трещины, образовавшиеся в стадии обжатия, перевозки или монтажа под воздействием момента от собственного веса Mw , уменьшают размеры поперечного сечения бетона (заштрихованная часть на рис. 80), т.е. уменьшают площадь, момент инерции и момент сопротивления приведенного сечения. За этим следует увеличение напряжений обжатия бетона sbp , увеличение деформаций ползучести бетона, рост потерь напряжений в арматуре от ползучести, уменьшение силы обжатия Р и снижение трещиностойкости той зоны, которая будет растянута от внешней (эксплуатационной) нагрузки.

    I b = W c ·y = 2·100·4.8 3 /3 = 7372,8 см 4 или b(2y) 3 /12 = 100(2·4.8) 3 /12 = 7372.8 см 4 - момент инерции условного приведенного сечения, тогда

    f b = 5·9·400 4 /384·275000·7372.8 = 1.45 см.

    Проверим возможный прогиб от растяжения арматуры.

    модуль упругости арматуры Е a = 2000000 кгс/см 2 , (2·10 5 МПа),

    условный момент инерции арматуры I a = 10.05·2·3.2 2 = 205.8 см 4 , тогда

    f a = 5·9·400 4 / 384·2000000·160.8 = 7.9 см

    Очевидно, что разным прогиб быть не может, а значит в результате деформации и выравнивания напряжений в сжатой зоне высота сжатой зоны будет уменьшаться. Подробности определения высоты сжатой зоны здесь (из-за недостатка места) не приводятся, при y ≈ 3.5 см прогиб составит примерно 3.2 см. Однако реальный прогиб будет другим, во-первых потому, что мы не учли деформацию бетона при растяжении (потому этот метод и является приблизительным), во вторых, при уменьшении высоты сжатой зоны в бетоне будут нарастать пластические деформации, увеличивающие общий прогиб. А кроме того при длительном приложении нагрузок развитие пластических деформаций также приводит к снижению начального модуля упругости. Определение этих величин - отдельная тема .

    Так для бетона класса В20 при длительно действующей нагрузке модуль упругости может уменьшиться в 3.8 раза (при влажности 40-75%). Соответственно прогиб от сжатия бетона составит уже 1.45·3.8 = 5.51 см. И тут даже двойное увеличение сечения арматуры в растянутой зоне сильно не поможет - необходимо увеличивать высоту балки.

    Но даже если не учитывать длительность действия нагрузки, то все равно 3.2 см - это достаточно большой прогиб. Согласно СНиП 2.01.07-85 "Нагрузки и воздействия" максимальный допустимый по конструктивным соображениям прогиб для плит перекрытия (чтобы стяжка не растрескивалась и т.п.) составит l/150 = 400/150 = 2.67 см. А так как и толщина защитного слоя бетона по-прежнему остается недопустимой, то из конструктивных соображений высоту плиты следует увеличить хотя бо до 11 см. Впрочем к определению момента сопротивления это никак не относится.