Неразрушающие способы контроля коррозионно-стойких покрытий. Капиллярный контроль, цветная дефектоскопия, капиллярный метод неразрушающего контроля Видео на тему: "Капиллярная дефектоскопия сварных швов"

У нас на сайте всегда представлено большое количество свежих актуальных вакансий. Используйте фильтры для быстрого поиска по параметрам.

Для успешного трудоустройства желательно иметь профильное образование, а также обладать необходимыми качествами и навыками работы. Прежде всего, нужно внимательно изучить требования работодателей по выбранной специальности, затем заняться составлением резюме.

Не стоит отправлять свое резюме одновременно по всем компаниям. Выбирайте подходящие вакансии, ориентируясь на свою квалификацию и опыт работы. Перечислим самые значимые для работодателей навыки, необходимые Вам для успешной работы инженером по неразрушающему контролю в Москве:

Топ 7 ключевых навыков, которыми Вам нужно обладать для трудоустройства

Также довольно часто в вакансиях встречаются следующие требования: ведение переговоров, проектная документация и ответственность.

Готовясь к собеседованию, используйте эту информацию как чек-лист. Это поможет Вам не только понравиться рекрутеру, но и получить желаемую работу!

Анализ вакансий в Москве

По результатам анализа вакансий, опубликованных на нашем сайте, указанная начальная зарплата, в среднем, составляет — 71 022 . Усредненный максимальный уровень дохода (указанная «зарплата до») — 84 295 . Нужно учитывать, что приведенные цифры это статистика. Реальная же зарплата при трудоустройстве может сильно отличаться в зависимости от многих факторов:
  • Ваш предыдущий опыт работы, образование
  • Тип занятости, график работы
  • Размер компании, ее отрасль, бренд и др.

Уровень зарплаты в зависимости от опыта работы соискателя

Капиллярный контроль. Цветная дефектоскопия. Капиллярный метод неразрушающего контроля.

_____________________________________________________________________________________

Капиллярная дефектоскопия - метод дефектоскопии, основанный на проникновении определенных контрастных веществ в поверхностные дефектные слои контролируемого изделия под действием капиллярного (атмосферного) давления, в результате последующей обработки проявителем повышается свето- и цветоконтрастность дефектного участка относительно неповрежденного, с выявлением количественного и качественного состава повреждений (до тысячных долей миллиметра).

Существует люминесцентный (флуоресцентный) и цветной методы капиллярной дефектоскопии.

В основном по техническим требованиям или условиям необходимо выявлять очень малые дефекты (до сотых долей миллиметра) и идентифицировать их при обычном визуальном осмотре невооруженным глазом просто невозможно. Использование же портативных оптических приборов, например увеличительной лупы или микроскопа, не позволяет выявить поверхностные повреждения из-за недостаточной различимости дефекта на фоне металла и нехватки поля зрения при кратных увеличениях.

В таких случаях применяют капиллярный метод контроля.

При капиллярном контроле индикаторные вещества проникают в полости поверхностных и сквозных дефектов материала объектов контроля, в последствие образующиеся индикаторные линии или точки регистрируются визуальным способом или с помощью преобразователя.

Контроль капиллярным методом осуществляется в соответствии с ГОСТ 18442-80 “Контроль неразрушающий. Капиллярные методы. Общие требования.”

Главным условием для обнаружения дефектов типа нарушения сплошности материала капиллярным методом является наличие полостей, свободных от загрязнений и других технических веществ, имеющих свободный доступ к поверхности объекта и глубину залегания, в несколько раз превышающую ширину их раскрытия на выходе. Для очистки поверхности перед нанесением пенетранта используют очиститель.

Назначение капиллярного контроля (капиллярной дефектоскопии)

Капиллярная дефектоскопия (капиллярный контроль) предназначена для обнаружения и инспектирования, невидимых или слабо видимых для невооруженного глаза поверхностных и сквозных дефектов (трещины, поры, непровары, межкристаллическая коррозия, раковины, свищи и т.д.) в контролируемых изделиях, определение их консолидации, глубины и ориентации на поверхности.

Применение капиллярного метода неразрушающего контроля

Капиллярный метод контроля применяется при контроле объектов любых размеров и форм, изготовленных из чугуна, черных и цветных металлов, пластмасс, легированных сталей, металлических покрытий, стекла и керамики в энергетике, ракетной технике, авиации, металлургии, судостроении, химической промышленности, при строительстве ядерных реакторов, в машиностроении, автомобилестроении, электротехники, литейном производстве, медицине, штамповке, приборостроении, медицине и других отраслях. В некоторых случаях этот метод является единственным для определения технической исправности деталей или установок и допуск их к работе.

Капиллярную дефектоскопию применяют как метод неразрушающего контроля также и для объектов из ферромагнитных материалов, если их магнитные свойства, форма, вид и расположение повреждений не позволяют достигать требуемой по ГОСТ 21105-87 чувствительности магнитопорошковым методом или магнитопорошковый метод контроля не допускается применять по техническим условиям эксплуатации объекта.

Капиллярные системы также широко применяются для контроля герметичности, в совокупности с другими методами, при мониторинге ответственных объектов и объектов в процессе эксплуатации. Основными достоинствами капиллярных методов дефектоскопии являются: несложность операций при проведение контроля, легкость в обращение с приборами, большой спектр контролируемых материалов, в том числе и немагнитные металлы.

Преимущество капиллярной дефектоскопии в том, что с помощью несложного метода контроля можно не только обнаружить и индентифицировать поверхностные и сквозные дефекты, но и получить по их расположению, форме,протяженности и ориентации по поверхности полную информацию о характере повреждения и даже некоторых причинах его возникновения (концентрация силовых напряжений, несоблюдение технического регламетна при изготовлении и пр.).

В качестве проявляющих жидкостей применяют органические люминофоры - вещества, обладающие ярким собственным излучением под действием ультрафиолетовых лучей, а также различные красители и пигменты. Поверхностные дефекты выявляют посредством средств, позволяющие извлекать пенетрант из полости дефектов и обнаруживать его на поверхности контролируемого изделия.

Приборы и оборудования применяемые при капиллярном контроле:

Наборы для капиллярной дефектоскопии Sherwin, Magnaflux, Helling (очистители, проявители, пенетранты)
. Пульверизаторы
. Пневмогидропистолеты
. Источники ультрафиолетового освещения (ультрафиолетовые фонари, осветители).
. Испытательные панели (тест-панель)
. Контрольные образцы для цветной дефектоскопии.

Параметр "чувствительность" в капиллярном методе дефектоскопии

Чувствительность капиллярного контроля - способность выявления несплошностей данного размера с заданной вероятностью при использовании конкретного способа, технологии контроля и пенетрантной системы. Согласно ГОСТ 18442-80 класс чувствительности контроля определяют в зависимости от минимального размера выявленных дефектов с поперечными размером 0,1 - 500 мкм.

Выявление поверхностных дефектов, имеющих размер раскрытия более 500 мкм, капиллярными методами контроля не гарантируется.

Класс чувствительности Ширина раскрытия дефекта, мкм

II От 1 до 10

III От 10 до 100

IV От 100 до 500

технологический Не нормируется

Физические основы и методика капиллярного метода контроля

Капиллярный метод неразрушающего контроля (ГОСТ 18442-80) основан на проникновении внутрь поверхностного дефекта индикаторного вещества и предназначен для выявления повреждений, имеющих свободный выход на поверхность изделия контроля. Метод цветной дефектоскопии подходит для обнаружения несплошностей с поперечными размером 0,1 - 500 мкм, в том числе сквозных дефектов, на поверхности керамики, черных и цветных металлов, сплавов, стекла и другие синтетических материалов. Нашел широкое применение при контроле целостности спаек и сварного шва.

Цветной или красящий пенетрант наносится с помощью кисти или распылителя на поверхность объекта контроля. Благодаря особым качествам, которое обеспечиваются на производственном уровне, выбор физических свойств вещества: плотности, поверхностного натяжения, вязкости, пенетрант под действием капиллярного давления, проникает в мельчайшие несплошности, имеющие открытый выход на поверхность контролируемого объекта.

Проявитель, наносимый на поверхность объекта контроля через относительно недолгое время после осторожного удаления с поверхности неусвоенного пенетранта, растворяет находящийся внутри дефекта краситель и за счет взаимного проникновения друг в друга “выталкивает” оставшийся в дефекте пенетрант на поверхность объекта контроля.

Имеющиеся дефекты видны достаточно четко и контрастно. Индикаторные следы в виде линий указывают на трещины или царапины, отдельные цветовые точки - на одиночные поры или выходы.

Процесс обнаружения дефектов капиллярным методом разделяется на 5 стадий (проведение капиллярного контроля):

1. Предварительная очистка поверхности (используют очиститель)
2. Нанесение пенетранта
3. Удаление излишков пенетранта
4. Нанесение проявителя
5. Контроль

Капиллярный контроль. Цветная дефектоскопия. Капиллярный метод неразрушающего контроля.

ВЫПОЛНИЛА: ЛОПАТИНА ОКСАНА

Капиллярная дефектоскопия - метод дефектоскопии, основанный на проникновении определенных жидких веществ в поверхностные дефекты изделия под действием капиллярного давления, в результате чего повышается свето- и цветоконтрастность дефектного участка относительно неповрежденного.

Капиллярная дефектоскопия (капиллярный контроль) предназначен для выявления невидимых или слабо видимых невооруженным глазом поверхностных и сквозных дефектов (трещины, поры, раковины, непровары, межкристаллическая коррозия, свищи и т.д.) в объектах контроля, определения их расположения, протяженности и ориентации по поверхности.

Индикаторная жидкость (пенетрант) – это окрашенная жидкость, предназначенная для заполнения открытых поверхностных дефектов и последующего образования индикаторного рисунка. Жидкость представляет собой раствор или суспензию красителя в смеси органических растворителей, керосина, масел с добавками поверхностно-активных веществ (ПАВ), снижающих поверхностное натяжение воды, находящейся в полостях дефектов и улучшающих проникновение пенетрантов в эти полости. Пенетранты содержат красящие вещества (цветной метод) или люминесцирующие добавки (люминесцентный метод), или их комбинацию.

Очиститель – служит для предварительной очистки поверхности и удаления излишков пенетранта

Проявителем называют дефектоскопический материал, предназначенный для извлечения пенетранта из капиллярной несплошности с целью образования четкого индикаторного рисунка и создания контрастирующего с ним фона. Существует пять основных видов проявителей, используемых с пенетрантами:

Сухой порошок;- водная суспензия;- суспензия в растворителе;- раствор в воде;- пластиковая пленка.

Приборы и оборудования для капиллярного контроля:

Материалы для цветной дефектоскопии,Люминесцентные материалы

Наборы для капиллярной дефектоскопии(очистители,проявители, пенетранты)

Пульверизаторы,Пневмогидропистолеты

Источники ультрафиолетового освещения (ультрафиолетовые фонари, осветители).

Испытательные панели (тест-панель)

Контрольные образцы для цветной дефектоскопии.

Процесс капиллярного контроля состоит из 5 этапов:

1 – предварительная очистка поверхности. Чтобы краситель мог проникнуть в дефекты на поверхности, ее предварительно следует очистить водой или органическим очистителем. Все загрязняющие вещества (масла, ржавчина, и т.п.) любые покрытия (ЛКП, металлизация) должны быть удалены с контролируемого участка. После этого поверхность высушивается, чтобы внутри дефекта не оставалось воды или очистителя.

2 – нанесение пенетранта. Пенетрант, обычно красного цвета, наносится на поверхность путем распыления, кистью или погружением объекта контроля в ванну, для хорошей пропитки и полного покрытия пенетрантом. Как правило, при температуре 5…50°С, на время 5…30 мин.

3 - удаление излишков пенетранта. Избыток пенетранта удаляется протиркой салфеткой, промыванием водой, или тем же очистителем, что и на стадии предварительной очистки. При этом пенетрант должен быть удален только с поверхности контроля, но никак не из полости дефекта. Затем поверхность высушивается салфеткой без ворса или струей воздуха.

4 – нанесение проявителя. После просушки сразу же на поверхность контроля тонким ровным слоем наносится проявитель (обычно белого цвета).

5 - контроль. Выявление имеющихся дефектов начинается непосредственно после окончания процесса проявки. При контроле выявляются и регистрируются индикаторные следы. Интенсивность окраски которых говорит о глубине и ширине раскрытия дефекта, чем бледнее окраска, тем дефект мельче. Интенсивную окраску имеют глубокие трещины. После проведения контроля проявитель удаляется водой или очистителем.

К недостаткам капиллярного контроля следует отнести его высокую трудоемкость при отсутствии механизации, большую длительность процесса контроля (от 0.5 до 1.5 ч), а также сложность механизации и автоматизации процесса контроля; снижение достоверности результатов при отрицательных температурах; субъективность контроля - зависимость достоверности результатов от профессионализма оператора; ограниченный срок хранения дефектоскопических материалов, зависимость их свойств от условий хранения.

Достоинствами капиллярного контроля являются: простота операций контроля, несложность оборудования, применимость к широкому спектру материалов, в том числе к немагнитным металлам. Главным преимуществом капиллярной дефектоскопии является то, что с его помощью можно не только обнаружить поверхностные и сквозные дефекты, но и получить по их расположению, протяженности, форме и ориентации по поверхности ценную информацию о характере дефекта и даже некоторых причинах его возникновения (концентрация напряжений, несоблюдение технологии и пр.).

Дефектоскопические материалы для цветной дефектоскопии выбирают в зависимости от требований, предъявляемых к контролируемому объекту, его состояния и условий контроля. В качестве параметра размера дефекта принимается поперечный размер дефекта на поверхности объекта контроля – так называемая ширина раскрытия дефекта. Минимальная величина раскрытия выявленных дефектов называется нижним порогом чувствительности и ограничивается тем, что весьма малое количество пенетранта, задержавшееся в полости небольшого дефекта, оказывается недостаточным, чтобы получить контрастную индикацию при данной толщине слоя проявляющего вещества. Существует также верхний порог чувствительности, который определяется тем, что из широких, но неглубоких дефектов пенетрант вымывается при устранении излишков пенетранта на поверхности. Обнаружение индикаторных следов, соответствующего указанным выше основным признакам, служит основанием для анализа о допустимости дефекта по его размеру, характеру, положению. ГОСТ 18442-80 установлено 5 классов чувствительности (по нижнему порогу) в зависимости от размеров дефектов

Класс чувствительности

Ширина раскрытия дефекта,мкм

От 10 до 100

От 100 до 500

технологический

Не нормируется

С чувствительностью по 1 классу контролируют лопатки турбореактивных двигателей, уплотнительные поверхности клапанов и их гнезд, металлические уплотнительные прокладки фланцев и др. (выявляемые трещины и поры величиной до десятых долей мкм). По 2 классу проверяют корпуса и антикоррозийные наплавки реакторов, основной металл и сварные соединения трубопроводов, детали подшипников (выявляемые трещины и поры величиной до нескольких мкм). По 3 классу проверяют крепеж ряда объектов, с возможностью выявления дефектов с раскрытием до 100 мкм, по 4 классу – толстостенное литье.

Капиллярные методы в зависимости от способа выявления индикаторного рисунка подразделяют на:

· Люминесцентный метод , основанный на регистрации контраста люминесцирующего в длинноволновом ультрафиолетовом излучении видимого индикаторного рисунка на фоне поверхности объекта контроля;

· контрастный (цветной) метод , основанный на регистрации контраста цветного в видимом излучении индикаторного рисунка на фоне поверхности объекта контроля.

· люминесцентно-цветной метод , основанный на регистрации контраста цветного или люминесцирующего индикаторного рисунка на фоне поверхности объекта контроля в видимом или длинноволновом ультрафиолетовом излучении;

· яркостный метод , основанный на регистрации контраста в видимом излучении ахроматического рисунка на фоне поверхности объекта.

ВЫПОЛНИЛ: ВАЛЮХ АЛЕКСАНДР

Капиллярный контроль

Капиллярный метод неразрушающего контроля

Капилл я рная дефектоскоп и я - метод дефектоскопии, основанный на проникновении определенных жидких веществ в поверхностные дефекты изделия под действием капиллярного давления, в результате чего повышается свето- и цветоконтрастность дефектного участка относительно неповрежденного.

Различают люминесцентный и цветной методы капиллярной дефектоскопии.

В большинстве случаев по техническим требованиям необ­ходимо выявлять настолько малые дефекты, что заметить их при визуальном контроле невооруженным глазом практически невозможно. Применение же оптических измерительных приборов, например лупы или микроскопа, не позволяет выявить поверхностные дефекты из-за недостаточной контрастности изображения де­фекта на фоне металла и малого поля зрения при больших увеличениях. В таких случаях применяют капиллярный метод контроля.

При капиллярном контроле индикаторные жидкости проникают в полости поверхностных и сквозных несплошностей материала объектов контроля, и образующиеся индикаторные следы регистрируются визуальным способом или с помощью преобразователя.

Контроль капиллярным методом осуществляется в соответствии с ГОСТ 18442-80 “Контроль неразрушающий. Капиллярные методы. Общие требования.”

Капиллярные методы подразделяют на основные, использующие капиллярные явления, и комбинированные, основанные на сочетании двух или более различных по физической сущности методов неразрушающего контроля, одним из которых является капиллярный контроль (капиллярная дефектоскопия).

Назначение капиллярного контроля (капиллярной дефектоскопии)

Капиллярная дефектоскопия (капиллярный контроль) предназначен для выявления невидимых или слабо видимых невооруженным глазом поверхностных и сквозных дефектов (трещины, поры, раковины, непровары, межкристаллическая коррозия, свищи и т.д.) в объектах контроля, определения их расположения, протяженности и ориентации по поверхности.

Капиллярные методы неразрушающего контроля основаны на капиллярном проникновении индикаторных жидкостей (пенетрантов) в полости поверхностных и сквозных несплошностей материала объекта контроля и регистрации образующихся индикаторных следов визуальным способом или с помощью преобразователя.

Применение капиллярного метода неразрушающего контроля

Капиллярный метод контроля применяется при контроле объектов любых размеров и форм, изготовленных из черных и цветных металлов, легированных сталей, чугуна, металлических покрытий, пластмасс, стекла и керамики в энергетике, авиации, ракетной технике, судостроении, химической промышленности, металлургии, при строительстве ядерных реакторов, в автомобилестроении, электротехники, машиностроении, литейном производстве, штамповке, приборостроении, медицине и других отраслях. Для некоторых материалов и изделий этот метод является единственным для определения пригодности деталей или установок к работе.

Капиллярная дефектоскопию применяют также и для неразрушающего контроля объектов, изготовленных из ферромагнитных материалов, если их магнитные свойства, форма, вид и месторасположение дефектов не позволяют достигать требуемой по ГОСТ 21105-87 чувствительности магнитопорошковым методом и магнитопорошковый метод контроля не допускается применять по условиям эксплуатации объекта.

Необходимым условием выявления дефектов типа нарушения сплошности материала капиллярными методами является наличие полостей, свободных от загрязнений и других веществ, имеющих выход на поверхность объектов и глубину распространения, значительно превышающую ширину их раскрытия.

Капиллярный контроль используется также при течеискании и, в совокупности с другими методами, при мониторинге ответственных объектов и объектов в процессе эксплуатации.

Достоинствами капиллярных методов дефектоскопии являются: простота операций контроля, несложность оборудования, применимость к широкому спектру материалов, в том числе к немагнитным металлам.

Преимуществом капиллярной дефектоскопии является то, что с его помощью можно не только обнаружить поверхностные и сквозные дефекты, но и получить по их расположению, протяженности, форме и ориентации по поверхности ценную информацию о характере дефекта и даже некоторых причинах его возникновения (концентрация напряжений, несоблюдение технологии и пр.).

В качестве индикаторных жидкостей применяют органические люминофоры - вещества, дающие яркое собственное свечение под действием ультрафиолетовых лучей, а также различные красители. Поверхностные дефекты выявляют с помощью средств, позволяющих извлекать индикаторные вещества из полости дефектов и обнаруживать их присутствие на поверхности контролируемого изделия.

Капилляр (трещина) , выходящий на поверхность объекта контроля только с одной стороны, называют поверхностной несплошностью, а соединяющий противоположные стенки объекта контроля, - сквозной. Если поверхностная и сквозная несплошности являются дефектами, то допускается применять вместо них термины «поверхностный дефект» и «сквозной дефект». Изображение, образованное пенетрантом в месте расположения несплошности и подобное форме сечения у выхода на поверхность объекта контроля, называют индикаторным рисунком, или индикакацией.

Применительно к несплошности типа единичной трещины вместо термина «индикация» допускается применение термина «индикаторный след». Глубина несплошности - размер несплошности в направлении внутрь объекта контроля от его поверхности. Длина несплошности - продольный размер несплошности на поверхности объекта. Раскрытие несплошности - поперечный размер несплошности у ее выхода на поверхность объекта контроля.

Необходимым условием надежного выявления капиллярным методом дефектов, имеющих выход на поверхность объекта, является относительная их незагрязнённость посторонними веществами, а также глубина распространения, значительно превышающая ширину их раскрытия (минимум 10/1). Для очистки поверхности перед нанесением пенетранта используют очиститель.

Капиллярные методы дефектоскопии подразделяют на основные, использующие капиллярные явления, и комбинированные, основанные на сочетании двух или более различных по физической сущности методов неразрушающего контроля, одним из которых является капиллярный.

Капиллярный контроль сварных соединений применяется для выявления наружных (поверхностных и сквозных) и . Такой способ проверки позволяет выявлять такие дефекты, как горячие и , непровары, поры, раковины и некоторые другие.

При помощи капиллярной дефектоскопии можно определить расположение и величину дефекта, а также его ориентацию по поверхности металла. Этот метод применяется как , так и . Также его используют при сварке пластмасс, стекла, керамики и других материалов.

Сущность метода капиллярного контроля состоит в способности специальных индикаторных жидкостей проникать в полости дефектов шва. Заполняя дефекты, индикаторные жидкости образуют индикаторные следы, которые регистрируются при визуальном осмотре, или с помощью преобразователя. Порядок капиллярного контроля определяется такими стандартами, как ГОСТ 18442 и EN 1289.

Классификация методов капиллярной дефектоскопии

Способы капиллярной проверки подразделяются на основные и комбинированные. Основные подразумевают только капиллярный контроль проникающими веществами. Комбинированные основаны на совместном применении двух или более , одним из которых является капиллярный контроль.

Основные методы контроля

Основные методы контроля подразделяются:

  1. В зависимости от типа проникающего вещества:
  • проверка с помощью проникающих растворов
  • проверка при помощи фильтрующих суспензий
  1. В зависимости от способа считывания информации:
  • яркостный (ахроматический)
  • цветной (хроматический)
  • люминесцентный
  • люминисцентно-цветной.

Комбинированные методы капиллярного контроля

Комбинированные методы подразделяются в зависимости от характера и способа воздействия на проверяемую поверхность. И бывают они:

  1. Капиллярно-электростатический
  2. Капиллярно-электроиндукционный
  3. Капиллярно-магнитный
  4. Капиллярно-радиационный метод поглощения
  5. Капиллярно-радиационный метод излучения.

Технология проведения капиллярной дефектоскопии

До проведения капиллярного контроля проверяемую поверхность необходимо очистить и просушить. После этого на поверхность наносят индикаторную жидкость - панетрант. Эта жидкость проникает в поверхностные дефекты швов и по истечении некоторого времени проводят промежуточную очистку, в ходе которой удаляется излишняя индикаторная жидкость. Далее на поверхность наносят проявитель, который начинает вытягивать индикаторную жидкость из сварных дефектов. Таким образом, на контролируемой поверхности проявляются рисунки дефекта, видимые невооружённым глазом, или при помощи специальных проявителей.

Этапы капиллярного контроля

Процесс контроля капиллярным методом можно разделить на следующие этапы:

  1. Подготовка и предварительная очистка
  2. Промежуточная очистка
  3. Процесс проявления
  4. Выявление сварочных дефектов
  5. Составление протокола в соответствии с результатами проверки
  6. Окончательная очистка поверхности

Материалы для капиллярного контроля

Перечень необходимых материалов для проведения капиллярной дефектоскопии дан в таблице:

Индикаторная жидкость

Промежуточный очиститель

Проявитель

Флуоресцентные жидкости

Цветные жидкости

Флуоресцентные цветные жидкости

Сухой проявитель

Эмульгатор на масляной основе

Жидкий проявитель на водной основе

Растворимый жидкий очиститель

Водный проявитель в виде суспензии

Водочувствительный эмульгатор

Вода или растворитель

Жидкий проявитель на основе воды или растворителя для специального применения

Подготовка и предварительная очистка проверяемой поверхности

При необходимости, с контролируемой поверхности сварного шва удаляют загрязнения, такие как окалина, ржавчина, масляные пятна, краска и др. Эти загрязнения удаляют с помощью механической или химической очистки, или комбинацией этих способов.

Механическую очистку рекомендуется проводить лишь в исключительных случаях, если на контролируемой поверхности находится рыхлая плёнка окислов или имеются резкие перепады между валиками шва, глубокие подрезы. Ограниченное применение механическая очистка получила из-за того, что при её проведении часто поверхностные дефекты оказываются закрытыми в результате затирания, и они не выявляются при проверке.

Химическая очистка происходит с применением различных химических чистящих средств, которые удаляют с проверяемой поверхности такие загрязнения, как краска, масляные пятна и др. Остатки химических реагентов могут реагировать с индикаторными жидкостями и влиять на точность контроля. Поэтому химические вещества после предварительной очистки должны смываться с поверхность водой, или другими средствами.

После предварительной очистки поверхности её необходимо просушить. Просушивание необходимо для того, чтобы на наружной поверхности проверяемого шва не осталось ни воды, ни растворителя, ни каких-либо других веществ.

Нанесение индикаторной жидкости

Нанесение индикаторных жидкостей на контролируемую поверхность может выполняться следующими способами:

  1. Капиллярным способом. В этом случае заполнение сварных дефектов происходит самопроизвольно. Жидкость наносится при помощи смачивания, погружения, струёй или распылением сжатым воздухом или инертным газом.
  2. Вакуумным способом. При таком способе в полостях дефектов создаётся разряженная атмосфера и давление становится в них меньше, чем атмосферное, т.е. получается своеобразный вакуум в полостях, который всасывает в себя индикаторную жидкость.
  3. Компрессионный способ. Этот способ противоположен вакуумному способу. Заполнение дефектов происходит под воздействием на индикаторную жидкость давления, превышающего атмосферное давление. Под большим давлением жидкость заполняет дефекты, вытесняя из них воздух.
  4. Ультразвуковой способ. Заполнение полостей дефектов происходит в ультразвуковом поле и использованием ультразвукового капиллярного эффекта.
  5. Деформационный способ. Полости дефектов заполняются под воздействием на индикаторную жидкость упругих колебаний звуковой волны или при статическом нагружении, увеличивающем минимальный размер дефектов.

Для лучшего проникновения индикаторной жидкости в полости дефектов, температура поверхности должна быть в пределах 10-50°С.

Промежуточная очистка поверхности

Наносить вещества для промежуточной очистки поверхности следует таким образом, чтобы индикаторная жидкость не удалялась из поверхностных дефектов.

Очистка водой

Избытки индикаторной жидкости могут быть удалены обрызгиванием, или протиранием влажной тканью. При этом, следует избегать механического воздействия на контролируемую поверхность. Температура воды не должна превышать 50°С.

Очистка растворителем

Сначала излишнюю жидкость удаляют при помощи чистой ткани без ворса. После этого поверхность очищают тканью, смоченной растворителем.

Очистка эмульгаторами

Для удаления индикаторных жидкостей используются водочувствительные эмульгаторы или эмульгаторы на основе масел. Перед нанесением эмульгатора необходимо смыть излишки индикаторной жидкости водой и сразу после этого нанести эмульгатор. После эмульгтрования необходимо поверхность металла промыть водой.

Комбинированная очистка водой и растворителем

При таком способе очистки сначала с контролируемой поверхности смывают водой излишнюю индикаторную жидкость, а затем очищают поверхность безворсовой тканью, смоченной растворителем.

Сушка после промежуточной очистки

Для высушивания поверхности после промежуточной очистки можно применить несколько способов:

  • вытиранием чистой сухой неволокнистой тканью
  • испарением при температуре окружающей среды
  • сушкой при повышенной температуре
  • сушкой в воздушной струе
  • комбинированием вышеперечисленных способов сушки.

Процесс сушки необходимо проводить таким образом, чтобы не происходило высыхания индикаторной жидкости в полостях дефектов. Для этого сушку выполняют при температуре, не превышающей 50°С.

Процесс проявления поверхностных дефектов в сварном шве

Проявитель наносят на контролируемую поверхность ровным тонким слоем. Процесс проявления следует начинать как можно быстрее после промежуточной очистки.

Сухой проявитель

Применение сухого проявителя возможно только с флуоресцентными индикаторными жидкостями. Наносится сухой проявитель напылением или с помощью электростатического распыления. Контролируемые участки должны покрываться однородно, равномерно. Локальные скопления проявителя недопустимы.

Жидкий проявитель на основе водной суспензии

Проявитель наносится однородно при погружении в него контролируемого соединения или разбрызгиванием при помощи аппарата. При использовании метода погружения, для получения наилучших результатов, длительность погружения должна быть как можно короче. После этого контролируемое соединение должно пройти сушку испарением или обдувом в печи.

Жидкий проявитель на основе растворителя

Проявитель наносится распылением на контролируемую поверхность таким образом, чтобы поверхность была равномерно смочена и на ней сформировалась тонкая и однородная плёнка.

Жидкий проявитель в виде водного раствора

Равномерное нанесение такого проявителя достигается помощи погружения в него контролируемых поверхностей, либо при помощи распыления специальными аппаратами. Погружение должно быть кратковременным, в этом случае достигаются наилучшие результат проверки. После этого контролируемые поверхности высушивают испарением или обдувом в печи.

Длительность процесса проявления

Длительность процесса проявления продолжается, как правило, в течение 10-30 мин. В отдельных случаях допускается увеличение длительности проявления. Отсчёт времени проявления начинается: для сухого проявителя сразу после его нанесения, а для жидкого проявителя - сразу после окончания просушивания поверхности.

Выявление сварочных дефектов в результате капиллярной дефектоскопии

По возможности, осмотр контролируемой поверхности начинают сразу же после нанесения проявителя или после его высушивания. Но окончательный контроль происходит после завершения процесса проявления. В качестве вспомогательных приборов, при оптическом контроле, применяются увеличительные стёкла, или очки с увеличительными линзами.

При использовании флуоресцентных индикаторных жидкостей

Недопустимо использование фотохроматических очков. Необходимо, чтобы глаза контролёра адаптировались к темноте в испытательной кабине в течение 5 минут, как минимум.

Ультрафиолетовое излучение не должно попадать в глаза контролёра. Все контролируемые поверхности не должны флуоресцировать (отражать свет). Также в поле зрения контролёра не должны попадать предметы, которые отражают свет под воздействием ультрафиолетовых лучей. Можно применять общее ультрафиолетовое освещение для того, чтобы контролёр мог беспрепятственно перемещаться по испытательной камере.

При использовании цветных индикаторных жидкостей

Все контролируемые поверхности осматриваются при дневном, или искусственном освещении. Освещённость на проверяемой поверхности должна быть не менее 500лк. При этом, на поверхности не должно быть бликов из-за отражения света.

Повторный капиллярный контроль

Если есть необходимость в повторном контроле, то весь процесс капиллярной дефектоскопии повторяют, начиная с процесса предварительной очистки. Для этого необходимо, по-возможности, обеспечить более благоприятные условия контроля.

Для повторного контроля допускается применять только такие же индикаторные жидкости, одного и того же производителя, что и при первом контроле. Использование других жидкостей, или таких же жидкостей, но разных производителей, не допускается. В этом случае необходимо выполнить тщательную очистку поверхности, чтобы на ней не осталось следов от прежней проверки.

Согласно EN571-1, основные стадии капиллярного контроля представлены на схеме:

Видео на тему: "Капиллярная дефектоскопия сварных швов"

Методы капиллярного контроля основаны на проникновении жидкости в полости дефектов и адсорбировании или диффузии ее из дефектов. При этом наблюдается разница в цвете или свечении между фоном и участком поверхности над дефектом. Капиллярные методы применяют для определения поверхностных дефектов в виде трещин, пор, волосовин и других нарушений сплошности на поверхности деталей.

К капиллярным методам дефектоскопии относится люминесцентный метод и метод красок.

При люминесцентном методе очищенные от загрязнений исследуемые поверхности покрываются с помощью распылителя или кисти флюоресцирующей жидкостью. В качестве таких жидкостей могут быть: керосин (90 %) с автолом (10 %); керосин (85 %) с трансформаторным маслом (15 %); керосин (55 %) с машинным маслом (25 %) и бензином (20 %).

Излишки жидкости удаляют обтирая контролируемые участки ветошью, смоченной в бензине. Чтобы ускорить выход флюоресцирующих жидкостей, находящихся в полости дефекта, поверхность детали опыляют порошком, обладающим адсорбирующими свойствами. Через 3-10 мин после опыления контролируемый участок освещают ультрафиолетовым светом. Поверхностные дефекты, в которые прошла люминесцирующая жидкость, становятся хорошо видимыми по яркому темно-зеленому или зелено-голубому свечению. Метод позволяет обнаружить трещины шириной до 0,01 мм.

При контроле методом красок сварной шов предварительно очищают и обезжиривают. На очищенную поверхность сварного соединения наносят раствор красителя. В качестве проникающей жидкости с хорошей смачиваемостью применяют красные краски следующего состава:

Жидкость наносят на поверхность пульверизатором или кистью. Время пропитки - 10-20 мин. По истечении этого времени лишнюю жидкость стирают с поверхности контролируемого участка шва ветошью, смоченной в бензине.

После полного испарения бензина с поверхности детали на нее наносят тонкий слой белой проявляющей смеси. Белую проявляющую краску приготовляют из коллодия на ацетоне (60 %), бензола (40 %) и густотертых цинковых белил (50 г/л смеси). Через 15-20 мин на белом фоне в местах расположения дефектов появляются характерные яркие полоски или пятна. Трещины обнаруживаются как тонкие линии, степень яркости которых зависит от глубины этих трещин. Поры появляются в виде точек различной величины, а межкристаллическая коррозия в виде тонкой сетки. Очень мелкие дефекты наблюдают под лупой 4-10-кратного увеличения. По окончании контроля белую краску удаляют о поверхности, протирая деталь ветошью, смоченной в ацетоне.