Суть расчета по предельным состояниям. Основы расчета по предельным состояниям Формула расчета нагрузки по второму предельному состояния

Этот метод с 1955 г. введен в практику расчета строительных конструкций. Предельным называют такое состояние конструкции, при котором невозможна ее дальнейшая нормальная эксплуатация. В соответствии со строительными нормами и правилами (СНиП) установлено три предельных состояния: первое предельное состояние, определяемое несущей способностью (прочностью или устойчивостью); второе предельное состояние, наступающее при появлении чрезмерных деформаций или колебаний, нарушающих нормальную эксплуатацию;  третье предельное состояние, возникающее при образовании трещин или других местных повреждений. Расчет по первому предельному состоянию является одним из вариантов расчета по предельным (разрушающим) нагрузкам, но в отличие от последнего учитывается еще и вероятность наступления предельного состояния. При расчете по предельным состояниям вместо одного общего коэффициента запаса вводят три отдельных коэффициента. Коэффициент перегрузки n1 учитывает неточности в определении нагрузки. Обычно нагрузку устанавливают нормами на основании результатов длительных наблюдений. Такую нагрузку называют нормативной Рн. Фактическая нагрузка может отклоняться от нормативной в неблагоприятную сторону. Для учета такого отклонения и вводят коэффициент перегрузки. Умножая нормативную нагрузку на этот коэффициент, получают расчетную нагрузку: Р n. Степень точности в определении различных нагрузок неодинакова, поэтому для каждого вида нагрузки вводится свой коэффициент перегрузки. Постоянная нагрузка (собственный вес конструкции) может быть подсчитана наиболее точно, поэтому коэффициент перегрузки принимается небольшим n 1,1. Временную нагрузку – вес поезда, толпы, давление на сооружение ветра, снега – точно подсчитать невозможно. В связи с этим для таких нагрузок вводятся повышенные коэффициенты перегрузки. Например, для снеговой нагрузки n 1,4. Расчетная нагрузка получается путем суммирования всех видов действующих нагрузок, помноженных на соответствующие коэффициенты перегрузки. Коэффициент однородности материала k 1, учитывающий возможное снижение прочности материала против установленной нормами и называемой нормативным сопротивлением Расчетное сопротивление данного материала получается путем умножения нормативного сопротивления на коэффициент однородности. Чем более однороден материал, тем ближе к единице коэффициент k. Нормативное сопротивление – то напряжение, которое, как минимум, должно быть обеспечено при испытаниях образцов материала данной марки. Для пластичных материалов за нормативное сопротивление принимают наименьшее значение предела текучести, а для хрупких – предела прочности. Например, для стали марки Ст.3 нормативное значение предела текучести МПа. В действительности возможны некоторые отклонения в ту или другую сторону, поэтому коэффициент однородности принимается k = 0,85 – 0,9, и расчетное сопротивление оказывается равным аПМ. Коэффициент условий работы m, который учитывает все остальные весьма разнообразные обстоятельства, могущие вызвать понижение несущей способности конструкции, как-то: специфические особенности работы материала, неточности расчетных предпосылок, неточности изготовления, влияние влажности, температуры, неравномерности распределения напряжений по сечению и другие факторы, которые не учтены в расчете прямым путем. При неблагоприятных условиях принимают, при нормальных, при особо благоприятных в отдельных случаях принимаютm 1. Основное расчетное условие метода предельных состояний может быть в общем виде записано следующим образом: где N – расчетное усилие, т.е. усилие (или изгибающий момент) от нормативных нагрузок, умноженных на соответствующие коэффициенты перегрузки; – нормативные сопротивления материала (предел прочности, текучести); – коэффициенты однородности; S – геометрические характеристики сечения (площадь, момент сопротивления); 1,. .i – коэффициенты условия работы; f – функция, соответствующая роду усилия (сжатие, растяжение, кручение, изгиб и т. д.). При расчете элементов конструкции, работающих на растяжение или сжатие, условие метода предельных состояний можно записать в следующем виде: где N – расчетное усилие; FНТ – площадь (нетто) опасного сечения. При расчете балок условие записывается так: Rm, где M – расчетный изгибающий момент; W – момент сопротивления сечения; m – коэффициент условий работы, который для остальных балок в большинстве случаев принимается равным единице. При этом возможны два случая. По условиям эксплуатации допустимые остаточные прогибы. В этом случае несущая способность балки определяется по изгибающему моменту: , где WПЛ – пластичный момент сопротивления; R – расчетное сопротивление. Если остаточные прогибы недопустимы, то предельным состоянием считается то, при котором напряжения в крайних волокнах достигают расчетного сопротивления. Несущая способность определяется из условия W, где W – момент сопротивления сечения при работе в упругой стадии. При определении несущей способности двутавровых и тому подобных балок с тонкими стенками и мощными поясами во всех случаях рекомендуется пользоваться предыдущей формулой MR W. Расчет статически неопределимых балок производится в предположении выравнивания изгибающих моментов в местах возможного образования пластических шарниров. Методы расчета выбираются в зависимости от условий работы конструкции и требований, которые к ней предъявляются. Если по условиям эксплуатации требуется ограничить величину деформаций конструкции, производится расчет на жесткость. Конечно, расчет на жесткость не заменяет расчета на прочность, но возможны случаи, когда размеры поперечных сечений элементов конструкции из расчета на жесткость оказываются больше, чем из расчета на прочность. В этом случае основным, решающим для данной конструкции оказывается расчет на жесткость.

Группы

Предельные состояния сооружений по степени возможных последствий подразделяют следующим образом:

В соответствии с методом расчёта по предельным состояниям вместо ранее применявшегося единого коэффициента запаса прочности (по методу допускаемых напряжений) используется несколько, учитывающих особенности работы сооружения , независимых коэффициентов, каждый из которых имеет определённый вклад в обеспечение надёжности конструкции и гарантии от возникновения предельного состояния .

Метод предельных состояний, разработанный в СССР и основанный на исследованиях под руководством профессора Н. С. Стрелецкого , введён строительными нормами и правилами в 1955 году и в Российской Федерации является основным методом при расчёте строительных конструкций .

Этот метод характеризуется полнотой оценки несущей способности и надёжности конструкций благодаря учёту :

  • вероятностных свойств действующих на конструкции нагрузок и сопротивлений этим нагрузкам;
  • особенностей работы отдельных видов конструкций;
  • пластических свойств материалов.

Расчёт конструкции по методу предельных состояний должен гарантировать ненаступление предельного состояния .

Примечания

Литература


Wikimedia Foundation . 2010 .

Смотреть что такое "Предельное состояние" в других словарях:

    предельное состояние - Состояние конструкции, при которой оно утрачивает способность сохранять одну из своих противопожарных функций. [ГОСТ Р 53310 2009] [ГОСТ Р 53310 2013] предельное состояние Состояние объекта, при котором его дальнейшая эксплуатация недопустима или … Справочник технического переводчика

    В строительной механике состояние конструкции (сооружения), при котором она перестает удовлетворять эксплуатационным требованиям. Метод предельного состояния является в Российской Федерации основным при расчете строительных конструкций … Большой Энциклопедический словарь

    Предельное состояние - 2.5. Предельное состояние Limiting state Состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно Источник: ГОСТ 27.002 89:… …

    - (в строительной механике), состояние конструкции (сооружения), при котором она перестаёт удовлетворять эксплуатационным требованиям. Метод предельного состояния является в России основным при расчёте строительных конструкций. * * * ПРЕДЕЛЬНОЕ… … Энциклопедический словарь

    Предельное состояние АЛ - 2.2. Предельное состояние АЛ состояние автолестницы, при котором ее дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление ее работоспособного состояния невозможно или нецелесообразно. Источник … Словарь-справочник терминов нормативно-технической документации

    предельное состояние - ribinė būsena statusas T sritis Standartizacija ir metrologija apibrėžtis Objekto būsena, kai tolesnis jo naudojimas neleistinas arba netikslingas. atitikmenys: angl. limiting state vok. Grenzzustand, m rus. предельное состояние, n pranc. état… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    предельное состояние - ribinė būsena statusas T sritis fizika atitikmenys: angl. limiting state vok. Grenzzustand, m rus. предельное состояние, n pranc. état limite, m … Fizikos terminų žodynas

    Состояние изделия, при к ром его дальнейшее применение по назначению недопустимо или нецелесообразно либо восстановление его исправного или работоспособного состояния невозможно или нецелесообразно … Большой энциклопедический политехнический словарь

    Предельное состояние - – состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна либо восстановление его работоспособного состояния невозможно или нецелесообразно. ГОСТ 27.002 89 … Коммерческая электроэнергетика. Словарь-справочник

    предельное состояние - состояние объекта, при котором его дальнейшая эксплуатация должна быть прекращена из за неустранимого нарушения требований безопасности, или неустранимого снижения уровня работоспособности, или недопустимого снижения эффективности эксплуатации … Политехнический терминологический толковый словарь

Книги

  • Мудрость правителя на пути долголетия. Теория и практика достижения бессмертия (книга+футляр) , Виногродский Б.Б.. В традиционном Китае достижение здорового долголетия - высшая ценность человеческой жизни. При этом здоровье понимается как уравновешенное внутреннее состояние человека, которое проявляется в…

20.12.2018


В основе расчета конструкций по предельным состояниям лежат четко установленные две группы предельных состояний конструкций, которые необходимо не допустить, используя систему расчетных коэффициентов; их введение гарантирует, что предельные состояния не наступят при неблагоприятных сочетаниях нагрузок и при наименьших значениях прочностных характеристик материалов. При наступлении предельных состояний конструкции перестают удовлетворять требованиям эксплуатации, - разрушаются или теряют устойчивость под действием внешних нагрузок и воздействий, или в них развиваются недопустимые перемещения или трещины. С целью более адекватного и экономичного расчета предельные состояния разделены на две принципиально отличающиеся группы - более ответственную первую (конструкции разрушаются при наступлении состояний этой группы) и менее ответственную вторую (конструкции перестают удовлетворять требованиям нормальной эксплуатации, но не разрушаются, их можно ремонтировать). Такой подход позволил дифференцированно назначать нагрузки и прочностные показатели материалов: с целью предохранения от наступления предельных состояний при расчетах по первой группе нагрузки принимаются несколько завышенными, а прочностные характеристики материалов - заниженными по сравнению с расчетами по второй группе. Это позволяет избежать наступления предельных состояний I группы.

В более ответственную первую группу входят предельные состояния по несущей способности, во вторую - по пригодности к нормальной эксплуатации. В предельные состояния первой группы включают хрупкое, вязкое или иного характера разрушение; потерю устойчивости формы конструкции или ее положения; усталостное разрушение; разрушение от совместного воздействия силовых факторов и неблагоприятных влияний внешней среды (агрессивность среды, попеременное замораживание и оттаивание, и т.д.). Выполняют расчет по прочности с учетом в необходимых случаях прогиба конструкции перед разрушением; расчет на опрокидывание и скольжение подпорных стен, внецентренно нагруженных высоких фундаментов; расчет на всплытие заглубленных или подземных резервуаров; расчет на выносливость конструкций, находящихся под воздействием многократно повторяющейся подвижной или пульсирующей нагрузки; расчет на устойчивость тонкостенных конструкций и т.д. Недавно к расчетам по первой группе добавился новый расчет на прогрессирующее обрушение высоких зданий при воздействиях, не предусмотренных условиями нормальной эксплуатации.

К предельным состояниям второй группы относят недопустимое по ширине и продолжительное раскрытие трещин (если по условиям эксплуатации они допустимы), недопустимые перемещения конструкций (прогибы, углы поворота, углы перекоса и амплитуды колебаний). Расчеты по предельным состояниям конструкций и их элементов выполняют для стадий изготовления, транспортирования, монтажа и эксплуатации. Так, для обычного изгибаемого элемента предельными состояниями I группы будут исчерпание прочности (разрушение) по нормальному и наклонному сечениям; предельными состояниями II группы - образование и раскрытие трещин, прогиб (рис. 3.12). При этом допустимая ширина раскрытия трещин при длительно действующей нагрузке составляет 0,3 мм, так как при этой ширине происходит самозалечивание трещин растущим кристаллическим сростком в цементном камне. Так как каждая десятая доля миллиметра допустимого раскрытия трещин существенно влияет на расход арматуры в конструкциях с обычным армированием, то увеличение допустимой ширины раскрытия трещин даже на 0,1 мм играет очень большую роль в экономии арматуры.

Факторами, входящими в расчет по предельным состояниям (расчетными факторами) являются нагрузки на конструкции, их размеры, и механические характеристики бетона и арматуры. Они непостоянны, и для них характерен разброс значений (статистическая изменчивость). В расчетах учитывают изменчивость нагрузок и механических характеристик материалов, а также факторы нестатистического характера, и различные условия работы бетона и арматуры, изготовления и эксплуатации элементов зданий и сооружений. Все расчетные факторы и расчетные коэффициенты нормируют в соответствующих СП.

Предельные состояния требуют дальнейшего глубокого исследования: так, в расчетах разделяют нормальные и наклонные сечения в одном элементе (желателен единый подход), рассматривается нереальный механизм разрушения в наклонном сечении, не учитываются вторичные эффекты в наклонной трещине (нагельный эффект рабочей арматуры и силы зацепления в наклонной трещине (см. рис. 3.12, и др.)).

Первым расчетным фактором являются нагрузки, которые делятся на нормативные и расчетные, а по длительности действия - на постоянные и временные; последние могут быть кратковременными и длительными. Отдельно рассматривают более редко проявляющиеся особые нагрузки. К постоянным нагрузкам относят собственный вес конструкций, вес и давление грунта, усилия предварительного напряжения арматуры. Длительные нагрузки - это вес стационарного оборудования на перекрытиях, давление газов, жидкостей, сыпучих тел в емкостях, вес содержимого в складах, библиотеках, и пр.; установленная нормами часть временной нагрузки в жилых домах, в служебных и бытовых помещениях; длительные температурные технологические воздействия от оборудования; снеговые нагрузки для III...VI климатических районов с коэффициентами 0,3...0,6. Эти значения нагрузок являются частью их полного значения, они вводятся в расчет с учетом влияния длительности действия нагрузок на перемещения, деформации, образование трещин. К кратковременным нагрузкам относят часть нагрузки на перекрытия жилых и общественных зданий; вес людей, деталей, материалов в зонах обслуживания и ремонта оборудования; нагрузки, возникающие при изготовлении, перевозке и монтаже элементов конструкций; снеговые и ветровые нагрузки; температурные климатические воздействия.

К особым нагрузкам относятся сейсмические и взрывные воздействия; нагрузки, вызываемые неисправностью оборудования и нарушением технологического процесса; неравномерными деформациями основания. Нормативные нагрузки устанавливают нормами по заранее заданной вероятности превышения средних значений или по номинальным значениям. Нормативные постоянные нагрузки принимают по проектным значениям геометрических и конструктивных параметров элементов и по средним значениям плотности материала. Нормативные временные технологические и монтажные нагрузки задают по наибольшим значениям, предусмотренным для нормальной эксплуатации; снеговые и ветровые - по средним из ежегодных неблагоприятных значений или по неблагоприятным значениям, соответствующим определенному среднему периоду их повторений. Величины расчетных нагрузок при расчете конструкций по I группе предельных состояний определяют умножением нормативной нагрузки на коэффициент надежности по нагрузке уf как правило, уf > 1 (это - один из факторов недопущения наступления предельного состояния). Коэффициент уf = 1,1 для собственного веса железобетонных конструкций; уf = 1,2 для собственного веса конструкций из бетонов на легких заполнителях; уf = 1,3 для различных временных нагрузок; но уf = 0,9 для веса конструкций в случаях, когда уменьшение массы ухудшает условия работы конструкции - в расчете устойчивости против всплытия, опрокидывания и скольжения. При расчете по менее опасной II группе предельных состояний уf = 1.

Так как одновременное действие всех нагрузок с максимальными значениями практически невероятно, для большей надежности и экономичности конструкции рассчитывают на разные сочетания нагрузок: они могут быть основными (в них входят постоянные, длительные и кратковременные нагрузки), и особыми (включающими постоянные, длительные, возможные кратковременные и одну из особых нагрузок). В основных сочетаниях при учете не менее двух временных нагрузок их расчетные значения (или соответствующие им усилия) умножают на коэффициенты сочетания: для длительных нагрузок w1 = 0,95; для кратковременных w2 = 0,9; при одной временной нагрузке w1 = w2 = 1. При трех и более кратковременных нагрузках их расчетные значения умножают на коэффициенты сочетаний: w2 = 1 для первой по степени важности кратковременной нагрузки; w2 = 0,8 для второй; w2 = 0,6 для третьей и всех остальных. В особых сочетаниях нагрузок принимают w2 = 0,95 для длительных нагрузок, w2 = 0,8 для кратковременных, кроме случаев проектирования конструкций в сейсмических районах. С целью экономичного проектирования, учитывая степень вероятности одновременного действия нагрузок, при расчете колонн, стен, фундаментов многоэтажных зданий временные нагрузки на перекрытия допускается снижать умножением на коэффициенты: для жилых домов, общежитий, служебных помещений и т.п. при грузовой площади А > 9 м2

Для залов читален, собраний, торговых и др. участков обслуживания и ремонта оборудования в производственных помещениях при грузовой площади А > 36 м2

где n - общее число перекрытий, временные нагрузки от которых учитывают при расчете рассматриваемого сечения.

В расчетах учитывают степень ответственности зданий и сооружений; она зависит от степени материального и социального ущерба при достижении конструкциями предельных состояний. Поэтому при проектировании учитывают коэффициент надежности по назначению уn, который зависит от класса ответственности зданий или сооружений. На коэффициент надежности по назначению делят предельные значения несущей способности, расчетные значения сопротивлений, предельные значения деформаций, раскрытия трещин, и умножают на него расчетные значения нагрузок, усилий и других воздействий. По степени ответственности здания и сооружения делятся на три класса: I класс. уn = 1 - здания и сооружения, имеющие высокое народнохозяйственное или социальное значение; главные корпуса ТЭС, АЭС; телевизионные башни; крытые спортивные сооружения с трибунами; здания театров, кинотеатров, и др.; II класс yn = 0,95 - менее значительные здания и сооружения, не входящие в классы I и III; III класс yn = 0,9 - склады, одноэтажные жилые дома, временные здания и сооружения.

Для более экономичного и обоснованного проектирования железобетонных конструкций установлены три категории требований к трещиностойкости (к сопротивлению образованию трещин в стадии I или сопротивлению раскрытию трещин в стадии II напряженно-деформированного состояния). Требования к образованию и раскрытию нормальных и наклонных к продольной оси элемента трещин зависят от вида применяемой арматуры и условий эксплуатации. При первой категории не допускается образование трещин; при второй категории допускается ограниченное по ширине непродолжительное раскрытие трещин при условии их последующего надежного закрытия; при третьей категории допускается ограниченное по ширине непродолжительное и продолжительное раскрытие трещин. К непродолжительному раскрытию относится раскрытие трещин при действии постоянных, длительных и кратковременных нагрузок; к продолжительному - раскрытие трещин при действии только постоянных и длительных нагрузок.

Предельная ширина раскрытия трещин аcrc, при которой обеспечиваются нормальная эксплуатация зданий, коррозионная стойкость арматуры и долговечность конструкции, в зависимости от категории требований по трещиностойкости не должна превышать 0,1...0,4 мм (см. табл. 3.1).

Предварительно напряженные элементы, находящиеся под давлением жидкости или газов (резервуары, напорные трубы и т.п.) при полностью растянутом сечении со стержневой или проволочной арматурой, а также при частично сжатом сечении с проволочной арматурой диаметром 3 мм и менее, должны отвечать требованиям первой категории. Другие предварительно напряженные элементы в зависимости от условий работы конструкции и вида арматуры должны отвечать требованиям второй или третьей категории. Конструкции без предварительного напряжения со стержневой арматурой класса А400, А500 должны отвечать требованиям третьей категории (см. табл. 3.1).

Порядок учета нагрузок при расчете конструкций на трещиностойкость зависит от категории требований (табл. 3.2). Чтобы не допустить выдергивания напрягаемой арматуры из бетона под нагрузкой и внезапного разрушения конструкций, на концах элементов в пределах длины зоны передачи напряжений с арматуры на бетон не допускается образование трещин при совместном действии всех нагрузок (кроме особых), вводимых в расчет с коэффициентом уf = 1. Трещины, возникающие при изготовлении, транспортировании и монтаже в зоне, которая впоследствии под нагрузкой будет сжатой, приводят к снижению усилий образования трещин в растянутой при эксплуатации зоне, увеличению ширины раскрытия и росту прогибов. Влияние этих трещин учитывают в расчетах. Наиболее важные для конструкции или здания расчеты прочности базируются на III стадии напряженно-деформированного состояния.

Конструкции обладают необходимой прочностью, если усилия от расчетных нагрузок (изгибающего момента, продольной или поперечной силы, и др.) не превышают усилий, воспринимаемых сечением при расчетных сопротивлениях материалов с учетом коэффициентов условий работы. На величину усилий от расчетных нагрузок влияют нормативные нагрузки, коэффициенты надежности, расчетные схемы, и др. Величина усилия, воспринимаемого сечением рассчитываемого элемента, зависит от его формы, размеров сечения, прочности бетона Rbn, арматуры Rsn, коэффициентов надежности по материалам ys и уb и коэффициентов условий работы бетона и арматуры уbi и уsi. Условия прочности всегда выражаются неравенствами, причем левая часть (внешнее воздействие) не может значительно превышать правую часть (внутренние усилия); рекомендуется допускать превышение не более 5 %, иначе повышается неэкономичность проекта.

Предельные состояния второй группы. Расчет по образованию трещин, нормальных и наклонных к продольной оси элемента, выполняют для проверки трещиностойкости элементов, к которым предъявляют требования первой категории (если образование трещин недопустимо). Этот расчет производят и для элементов, к трещиностойкости которых предъявляют требования второй и третьей категории, чтобы установить, появляются ли трещины, и в случае их появления перейти к расчету их раскрытия.

Нормальные к продольной оси трещины не появляются, если изгибающий момент от внешних нагрузок не превосходит момента внутренних сил

Наклонные к продольной оси элемента трещины (в приопорной зоне) не появляются, если главные растягивающие напряжения в бетоне не превосходят расчетных значений. При расчете раскрытия трещин, нормальных и наклонных к продольной оси, определяют ширину раскрытия трещин на уровне растянутой арматуры, чтобы она была не более предельной ширины раскрытия, установленной нормами

При расчете перемещений (прогибов) определяют прогиб элементов от нагрузок с учетом длительности их действия fскс, чтобы он не превышал допустимый прогиб fcrc,ult. Предельные прогибы ограничивают эстетическими и психологическими требованиями (чтобы он не был визуально заметен), технологическими требованиями (для обеспечения нормальной работы разных технологических установок, и др.), конструктивными требованиями (учитывающими влияние соседних элементов, ограничивающих деформации), физиологическими требованиями, и др. (табл. 3.3). Предельные прогибы предварительно напряженных элементов, устанавливаемые эстетико-психологическими требованиями, целесообразно увеличивать на высоту выгиба вследствие преднапряжения (строительного подъема), если это не ограничено технологическими или конструктивными требованиями. При расчете прогибов в случае их ограничения технологическими или конструктивными требованиями расчет ведут на действие постоянных, длительных и кратковременных нагрузок; при их ограничении эстетическими требованиями конструкции рассчитывают на действие постоянных и длительных нагрузок. Предельные прогибы консолей, отнесенные к вылету консоли, увеличивают в 2 раза. Нормами установлены предельные прогибы по физиологическим требованиям. Должен также выполняться расчет зыбкости для лестничных маршей, площадок и др., чтобы добавочный прогиб от кратковременно действующей сосредоточенной нагрузки 1000 H при наиболее невыгодной схеме ее приложения не превышал 0,7 мм.

В III стадии напряженно-деформированного состояния в сечениях, нормальных к продольной оси изгибаемых и внецентренно сжатых с относительно большими эксцентриситетами элементов, при двузначной эпюре напряжений, наблюдается одинаковое изгибное напряженно-деформированное состояние (рис. 3.13). Усилия, воспринимаемые сечением, нормальным к продольной оси элемента, определяют по расчетным сопротивлениям материалов с учетом коэффициентов условий работы. При этом полагают, что бетон растянутой зоны не работает (obt = О); напряжения в бетоне сжатой зоны равны Rb при прямоугольной эпюре напряжений; напряжения в продольной растянутой арматуре равны Rs; продольная арматура в сжатой зоне сечения испытывает напряжение Rsc.

В условии прочности момент внешних сил не должен быть более момента, воспринимаемого внутренними усилиями в сжатом бетоне и в растянутой арматуре. Условие прочности относительно оси, проходящей через центр тяжести растянутой арматуры

где M - момент внешних сил от расчетных нагрузок (во внецентренно сжатых элементах - момент внешней продольной силы относительно той же оси), M = Ne (е - расстояние от силы N до центра тяжести сечения растянутой арматуры); Sb - статический момент площади сечения бетона сжатой зоны относительно той же оси; zs - расстояние между центрами тяжести растянутой и сжатой арматуры.

Напряжение в напрягаемой арматуре, расположенной в сжатой от действия нагрузок зоне, osc определяют по работе. В элементах без предварительного напряжения osc = Rsc. Высоту сжатой зоны х для сечений, работающих по случаю 1, когда в растянутой арматуре и сжатом бетоне достигнуты предельные сопротивления, определяют из уравнения равновесия предельных усилий

где Ab - площадь сечения бетона сжатой зоны; для N принимают знак минус при внецентренном сжатии, знак + при растяжении, N = 0 при изгибе.

Высоту сжатой зоны х для сечений, работающих по случаю 2, когда разрушение происходит по сжатому бетону хрупко, а напряжения в растянутой арматуре не достигают предельного значения, также определяют из уравнения (3.12). Ho в этом случае расчетное сопротивление Rs заменяют напряжением os < Rs. Опытами установлено, что напряжение os зависит от относительной высоты сжатой зоны e = x/ho. Его можно определить по эмпирической формуле

где со = xo/ho - относительная высота сжатой зоны при напряжении в арматуре os = osp (оs = О в элементах без предварительного напряжения).

При os = osp (или при os = 0) фактическая относительная высота сжатой зоны e = 1, и со может рассматриваться как коэффициент полноты фактической эпюры напряжений в бетоне при замене ее условной прямоугольной эпюрой; при этом усилие бетона сжатой зоны Nb = w*ho*Rb (см. рис. 3.13). Значение со называется характеристикой деформативных свойств бетона сжатой зоны. Граничная относительная высота сжатой зоны играет большую роль в расчетах прочности, так как она ограничивает оптимальный случай разрушения, когда растянутая и сжатая зоны одновременно исчерпывают прочность. Граничную относительную высоту сжатой зоны eR = xR/h0, при которой растягивающие напряжения в арматуре начинают достигать предельных значений Rs, находят из зависимости eR = 0,8/(1 + Rs/700), или по табл. 3.2. В общем случае расчет прочности сечения, нормального к продольной оси, выполняют в зависимости от значения относительной высоты сжатой зоны. Если e < eR, высоту сжатой зоны определяют из уравнения (3.12), если же e > eR, прочность рассчитывают. Напряжения высокопрочной арматуры os в предельном состоянии могут превышать условный предел текучести. По данным опытов это может происходить, если e < eR. Превышение оказывается тем большим, чем меньше значение e, Опытная зависимость имеет вид

В расчетах прочности сечений расчетное сопротивление арматуры Rs умножают на коэффициент условий работы арматуры

где n - коэффициент, принимаемый равным: для арматуры классов А600 - 1,2; А800, Вр1200, Вр1500, К1400, К1500 - 1,15; A1000 - 1,1. 4 определяют при ys6 = 1.

Нормы устанавливают предельный процент армирования: площадь сечения продольной растянутой арматуры, а также сжатой, если она требуется по расчету, в процентах от площади сечения бетона, us = As/bh0 принимают не менее: 0,1 % - для изгибаемых, внецентренно растянутых элементов и внецентренно сжатых элементов при гибкости l0/i < 17 (для прямоугольных сечений l0/h < 5); 0,25 % - для внецентренно сжатых элементов при гибкости l0/i > 87 (для прямоугольных сеченийl0/h > 25); для промежуточных значений гибкости элементов значение us определяют но интерполяции. Предельный процент армирования изгибаемых элементов с одиночной арматурой (в растянутой зоне) определяют из уравнения равновесия предельных усилий при высоте сжатой зоны, равной граничной. Для прямоугольного сечения

Предельный процент армирования с учетом значения eR, для предварительно напряженных элементов

Для элементов без предварительного напряжения

Предельный процент армирования уменьшается с повышением класса арматуры. Сечения изгибаемых элементов считают переармированными, если их процент армирования выше предельного. Минимальный процент армирования необходим для восприятия не учитываемых расчетом усадочных, температурных и других усилий. Обычно umin = 0,05 % для продольной растянутой арматуры изгибаемых элементов прямоугольного сечения. Каменные и армокаменные конструкции рассчитывают аналогично железобетонным конструкциям по двум группам предельных состояний. Расчет по I группе должен предотвратить конструкцию от разрушения (расчет по несущей способности), от потери устойчивости формы или положения, усталостное разрушение, разрушение при совместном действии силовых факторов и влияния внешней среды (замораживания, агрессии, и пр.). Расчет по II группе направлен на предотвращение конструкции от недопустимых деформаций, чрезмерного раскрытия трещин, отслоения облицовки кладки. Этот расчет выполняют тогда, когда в конструкциях не допускаются трещины или ограничивается их раскрытие (облицовки резервуаров, внецентренно сжатые стены и столбы при больших эксцентриситетах и т.д.), или ограничивается развитие деформации из условий совместной работы (заполнение стен, каркас, и т.д.).

Расчет на прочность может производиться по одной из двух методик - по предельному состоянию, или по допускаемым напряжениям. Методика расчета по допускаемым напряжениям принята при расчете машиностроительных конструкций, и основы ее использования приведены в курсе «Сопротивления материалов». При расчете строительных конструкций принята методика расчета по предельному состоянию, более совершенная, чем методика расчета по допускаемым напряжениям.

Предельное напряженное состояние – состояние, когда в точке возникает напряженное состояние, ведущее к возникновению нового процесса. Например, к развитию пластической деформации, к образованию трещины и т.д. Различные ПНС возникают при различных видах нагружения.

Предельное состояние – такое состояние, при котором конструкция теряет работоспособность или ее состояние становится нежелательной. Усилия вызывающие предельное состояние называются предельными

Следует различать предельные состояния и предельные напряженные состояния. Не всегда эти понятия совпадают. Примеры:

Увеличение напряжений при изгибе балки до предела текучести приводит достижению ПНС в точках максимально удаленных от нейтральной линии. Дальнейшее увеличение нагрузки приводит к достижению напряжениями уровня предела текучести во всем сечении – предельного состояния в сечении, в конструкции происходит качественные изменения, перемещения резко увеличиваются, поскольку в наиболее нагруженном сечении образуется пластический шарнир.

Увеличение напряжений при растяжении приводит к последовательному появлению следующих предельных напряженных состояний: а) начала равномерной пластической деформации; б) образования шейки; в) разрушения.

Метод расчета по предельным состояниям

В соответствии с ГОСТ 27751-88 "Надежность строительных конструкций и оснований. Основные положения по расчету" предельные состояния подразделяются на две группы:

    первая группа включает предельные состояния, которые ведут к полной непригодности к эксплуатации конструкций, оснований (зданий или сооружений в целом) или к полной (частичной) потере несущей способности зданий и сооружений в целом;

    вторая группа включает предельные состояния, затрудняющие нормальную эксплуатацию конструкций (оснований) или уменьшающие долговечность зданий (сооружений) по сравнению с предусматриваемым сроком службы.

Предельные состояния первой группы характеризуются:

    разрушением любого характера (например, пластическим, хрупким, усталостным);

    потерей устойчивости формы, приводящей к полной непригодности к эксплуатации;

    потерей устойчивости положения;

    переходом в изменяемую систему;

    качественным изменением конфигурации;

    другими явлениями, при которых возникает необходимость прекращения эксплуатации (например, чрезмерными деформациями в результате ползучести, пластичности, сдвига в соединениях, раскрытия трещин, а также образованием трещин).

Предельные состояния второй группы характеризуются:

    достижением предельных деформаций конструкции (например, предельных прогибов, поворотов) или предельных деформаций основания;

    достижением предельных уровней колебаний конструкций или оснований;

    образованием трещин;

    достижением предельных раскрытий или длин трещин;

    потерей устойчивости формы, приводящей к затруднению нормальной эксплуатации;

    другими явлениями, при которых возникает необходимость временного ограничения эксплуатации здания или сооружения из-за неприемлемого снижения их срока службы (например, коррозионные повреждения).

Первое предельное состояние для растянутых и сжатых элементов выражается соотношением:

где
– расчетное сопротивление по пределу текучести;

– предел текучести;

– коэффициент надежности по материалу (γ С >1);

– расчетное сопротивление по пределу прочности;

– предел прочности;

– коэффициент условий работы (γ С <1);

-коэффициент надежности для элементов конструкций, рассчитываемых на прочность с использованием расчетных сопротивленийR u ;

– площадь поперечного сечения растянутого (сжатого) элемента.

Для изгибаемых элементов:

Формально величину в правой части неравенств (2 .0), (2 .0), (2 .0), мы можем принять за допускаемое напряжение, приемы расчета по предельному состоянию и допускаемым напряжениям совпадают, однако при расчете по предельным состояниям общий и неизменный коэффициент запаса прочности заменяется несколькими переменными величинами. Это позволяет при расчете по предельному состоянию проектировать эксплуатационно равнопрочные конструкции.

При определении расчетных сопротивлений для сварных швов R W учитываются следующее: основной материал сварной конструкции, вспомогательные материалы используемые при сварке (марки покрытых электродов, электродных проволок), наличие либо отсутствие физических методов контроля сварного шва.

Предельным называется такое состояние, при котором сооружение (конструкция) перестает удовлетворять эксплуатационным требованиям, т.е. теряет способность сопротивляться внешним воздействиям и нагрузкам, получает недопустимые перемещения или ширину раскрытия трещин и т.д.

По степени опасности нормы устанавливают две группы предельных состояний: первая группа - по несущей способности;

вторая группа - по к нормальной эксплуатации.

К предельным состояниям первой группы относят хрупкое, вязкое, усталостное или иное разрушение, а также потерю устойчивости формы, потерю устойчивости положения, разрушение от совместного действия силовых факторов и неблагоприятных условий окружающей среды.

Предельные состояния второй группы характеризуются образованием и чрезмерным раскрытием трещин, чрезмерными прогибами, углами поворота, амплитудами колебаний.

Расчет по первой группе предельных состояний является основным и обязательным во всех случаях.

Расчет по второй группе предельных состояний производится для тех конструкций, которые теряют свои эксплуатационные качества вследствие наступления вышеперечисленных причин.

Задачей расчета по предельным состояниям является обеспечение требуемой гарантии того, что за время эксплуатации сооружения или конструкции не наступит ни одно из предельных состояний.

Переход конструкции в то или иное предельное состояние зависит от многих факторов, наиболее важными из которых являются:

1. внешние нагрузки и воздействия;

2. механические характеристики бетона и арматуры;

3. условия работы материалов и конструкции.

Каждый фактор характеризуется изменчивостью в процессе эксплуатации, причем изменчивость каждого фактора в отдельности не зависит от остальных и является процессом случайным. Так нагрузки и воздействия могут отличаться от заданной вероятности превышения средних значений, а механические характеристики материалов - от заданной вероятности снижения средних значений.

В расчетах по предельным состояниям учитывают статистическую изменчивость нагрузок и прочностных характеристик материалов, а также различные неблагоприятные или благоприятные условия работы.

2.2.3. Нагрузки

Нагрузки делятся на постоянные и временные. Временные, в зависимости от продолжительности действия, подразделяются на длительные, кратковременные и особые.

К постоянным нагрузкам относятся вес несущих и ограждающих конструкций, вес и давление грунта, усилие предварительного обжатия.

К длительным временным нагрузкам относят вес стационарного оборудования на перекрытиях; давление газов, жидкостей, сыпучих тел в емкостях; нагрузки в складских помещениях; длительные температурные технологические воздействия, часть полезной нагрузки жилых и общественных зданий, от 30 до 60% веса снега, часть нагрузок мостовых кранов и т.д.

Кратковременными нагрузками или временными нагрузками непродолжительного действия считаются: вес людей, материалов в зонах обслуживания и ремонта; часть нагрузки на перекрытиях жилых и общественных зданий; нагрузки, возникающие при изготовлении, перевозке и монтаже; нагрузки от подвесных и мостовых кранов; снеговые и ветровые нагрузки.

Особые нагрузки возникают при сейсмических, взрывных и аварийных воздействиях.

Различают две группы нагрузок - нормативные и расчетные.

Нормативными называют такие нагрузки, которые не могут быть превышены при нормальной эксплуатации.

Нормативные нагрузки устанавливаются на основе опыта проектирования, строительства и эксплуатации зданий и сооружений.

Принимаются они по нормам с учетом заданной вероятности превышения средних значений. Величины постоянных нагрузок определяют по проектным значениям геометрических параметров и средним величинам плотности материалов.

Нормативные временные нагрузки устанавливаются по наибольшим значениям, например, ветровые и снеговые нагрузки -по средним из ежегодных значений для неблагоприятного периода их действия.

Расчетные нагрузки.

Изменчивость нагрузок, в результате которой возникает вероятность превышения их величин, а в отдельных случаях и снижения, по сравнению с нормативными, оценивается введением коэффициента надежности .

Расчетные нагрузки определяются умножением нормативной нагрузки на коэффициент надежности, т.е.

(2.38)

где q

При расчете конструкций по первой группе предельных состояний принимается, как правило, больше единицы и только в том случае, когда уменьшение нагрузки ухудшает условия работы конструкции, принимают < 1 .

Расчет конструкции по второй группе предельных состояний производится на расчетные нагрузки с коэффициентом =1, учитывая меньшую опасность их наступления.

Сочетание нагрузок

На сооружение действует одновременно несколько нагрузок. Одновременное достижение их максимальных значений маловероятно. Поэтому расчет производится на различные неблагоприятные сочетания их, с введением коэффициента сочетаний.

Различают два вида сочетаний: основные сочетания, состоящие из постоянных, длительных и кратковременных нагрузок; особые сочетания, состоящие из постоянных, длительных, возможных кратковременных и одной из особых нагрузок.

Если в основное сочетание входит только одна кратковременная нагрузка, коэффициент сочетаний принимается равным единице, при учете двух и более кратковременных нагрузок последние умножаются на 0,9.

При проектировании следует учитывать степень ответственности и капитальности зданий и сооружений.

Учёт осуществляется введением коэффициента надёжности по назначению, который принимается в зависимости от класса сооружений.Для сооружений 1 класса (объекты уникальные и монументальные)
, дляобъектов II класса (многоэтажные жилые, общественные, производственные)
. Для сооружений III класса