Динамический диапазон фотографии и способы его расширения

© 2014 сайт

Или фотографическая широта фотоматериала – это отношение между максимальным и минимальным значениями экспозиции , которые могут быть корректно запечатлены на снимке. Применительно к цифровой фотографии, динамический диапазон фактически эквивалентен отношению максимального и минимального возможных значений полезного электрического сигнала, генерируемого фотосенсором в ходе экспонирования.

Динамический диапазон измеряется в ступенях экспозиции (). Каждая ступень соответствует удвоению количества света. Так, например, если некая камера имеет динамический диапазон в 8 EV, то это означает, что максимальное возможное значение полезного сигнала её матрицы относится к минимальному как 2 8:1, а значит, камера способна запечатлеть в пределах одного кадра объекты, отличающиеся по яркости не более чем в 256 раз. Точнее, запечатлеть-то она может объекты с любой яркостью, однако объекты, чья яркость будет превышать максимальное допустимое значение выйдут на снимке ослепительно белыми, а объекты, чья яркость окажется ниже минимального значения, – угольно чёрными. Детали и фактура будут различимы лишь на тех объектах, яркость которых укладывается в динамический диапазон камеры.

Для описания отношения между яркостью самого светлого и самого тёмного из снимаемых объектов часто используется не вполне корректный термин «динамический диапазон сцены». Правильнее будет говорить о диапазоне яркости или об уровне контраста, поскольку динамический диапазон – это обычно характеристика измеряющего устройства (в данном случае, матрицы цифрового фотоаппарата).

К сожалению, диапазон яркости многих красивых сцен, с которыми мы сталкиваемся в реальной жизни, может ощутимо превышать динамический диапазон цифровой фотокамеры. В таких случаях фотограф бывает вынужден решать, какие объекты должны быть проработаны во всех деталях, а какие можно оставить за пределами динамического диапазона без ущерба для творческого замысла. Для того чтобы максимально эффективно использовать динамический диапазон вашей камеры, от вас порой может потребоваться не столько доскональное понимание принципа работы фотосенсора, сколько развитое художественное чутьё.

Факторы, ограничивающие динамический диапазон

Нижняя граница динамического диапазона задана уровнем собственного шума фотосенсора. Даже неосвещённая матрица генерирует фоновый электрический сигнал, называемый темновым шумом. Также помехи возникают при переносе заряда в аналого-цифровой преобразователь, да и сам АЦП вносит в оцифровываемый сигнал определённую погрешность – т.н. шум дискретизации.

Если сделать снимок в полной темноте или с крышкой на объективе, то камера запишет только этот бессмысленный шум. Если позволить минимальному количеству света попасть на сенсор, фотодиоды начнут накапливать электрический заряд. Величина заряда, а значит, и интенсивность полезного сигнала, будет пропорциональна числу пойманных фотонов. Чтобы на снимке проступили хоть сколько-нибудь осмысленные детали, необходимо, чтобы уровень полезного сигнала превысил уровень фонового шума.

Таким образом, нижнюю границу динамического диапазона или, иначе говоря, порог чувствительности сенсора формально можно определить как уровень выходного сигнала, при котором отношение сигнал/шум больше единицы.

Верхняя граница динамического диапазона определяется ёмкостью отдельного фотодиода. Если во время экспозиции какой-либо фотодиод накопит электрический заряд предельной для себя величины, то соответствующий перегруженному фотодиоду пиксель изображения получится абсолютно белым, и дальнейшее облучение уже никак не повлияет на его яркость. Это явление называют клиппингом. Чем выше перегрузочная способность фотодиода, тем больший сигнал способен он дать на выходе, прежде чем достигнет насыщения.

Для большей наглядности обратимся к характеристической кривой, которая представляет собой график зависимости выходного сигнала от экспозиции. На горизонтальной оси отложен двоичный логарифм облучения, получаемого сенсором, а на вертикальной – двоичный логарифм величины электрического сигнала, генерируемого сенсором в ответ на это облучение. Мой рисунок в значительной степени условен и преследует исключительно иллюстративные цели. Характеристическая кривая настоящего фотосенсора имеет несколько более сложную форму, да и уровень шума редко бывает столь высок.

На графике хорошо видны две критические переломные точки: в первой из них уровень полезного сигнала пересекает шумовой порог, а во второй – фотодиоды достигают насыщения. Значения экспозиции, лежащие между этими двумя точками, и составляют динамический диапазон. В данном абстрактном примере он равен, как несложно заметить, 5 EV, т.е. камера способна переварить пять удвоений экспозиции, что равнозначно 32-кратной (2 5 =32) разнице в яркости.

Зоны экспозиции, составляющие динамический диапазон неравноценны. Верхние зоны отличаются более высоким отношением сигнал/шум, и потому выглядят чище и детальнее, чем нижние. Вследствие этого верхняя граница динамического диапазона весьма вещественна и ощутима – клиппинг обрубает света при малейшей передержке, в то время как нижняя граница неприметным образом тонет в шумах, и переход к чёрному цвету далеко не так резок, как к белому.

Линейная зависимость сигнала от экспозиции, а также резкий выход на плато являются уникальными чертами именно цифрового фотографического процесса. Для сравнения взгляните на условную характеристическую кривую традиционной фотоплёнки.

Форма кривой и особенно угол наклона сильно зависят от типа плёнки и от процедуры её проявления, но неизменным остаётся главное, бросающееся в глаза отличие плёночного графика от цифрового – нелинейный характер зависимости оптической плотности плёнки от величины экспозиции.

Нижняя граница фотографической широты негативной плёнки определяется плотностью вуали, а верхняя – максимальной достижимой оптической плотностью фотослоя; у обращаемых плёнок – наоборот. Как в тенях, так и в светах наблюдаются плавные изгибы характеристической кривой, указывающие на падение контраста при приближении к границам динамического диапазона, ведь угол наклона кривой пропорционален контрастности изображения. Таким образом, зоны экспозиции, лежащие на средней части графика, обладают максимальным контрастом, в то время как в светах и тенях контраст снижен. На практике разница между плёнкой и цифровой матрицей особенно хорошо заметна в светах: там, где в цифровом изображении света выжжены клиппингом, на плёнке детали всё ещё различимы, хоть и малоконтрастны, а переход к чисто белому цвету выглядит плавным и естественным.

В сенситометрии используются даже два самостоятельных термина: собственно фотографическая широта , ограниченная сравнительно линейным участком характеристической кривой, и полезная фотографическая широта , включающая помимо линейного участка также основание и плечо графика.

Примечательно, что при обработке цифровых фотографий, к ним, как правило, применяется более или менее выраженная S-образная кривая , повышающая контраст в полутонах ценой его снижения в тенях и светах, что придаёт цифровому изображению более естественный и приятный глазу вид.

Разрядность

В отличие от матрицы цифрового фотоаппарата человеческому зрению свойственен, скажем так, логарифмический взгляд на мир. Последовательные удвоения количества света воспринимаются нами как равные изменения яркости. Световые числа можно даже сравнить с музыкальными октавами, ведь двукратные изменения частоты звука воспринимаются на слух как единый музыкальный интервал. По такому принципу работают и другие органы чувств. Нелинейность восприятия очень сильно расширяет диапазон чувствительности человека к раздражителям различной интенсивности.

При конвертировании RAW-файла (не важно – средствами камеры или в RAW-конвертере), содержащего линейные данные, к нему автоматически применяется т.н. гамма-кривая, которая призвана нелинейно повысить яркость цифрового изображения, приводя её в соответствие с особенностями человеческого зрения.

При линейной конверсии изображение получается слишком тёмным.

После гамма-коррекции яркость приходит в норму.

Гамма-кривая как бы растягивает тёмные тона и сжимает светлые, делая распределение градаций более равномерным. В результате изображение приобретает естественный вид, но шум и артефакты дискретизации в тенях неизбежно становятся более заметными, что только усугубляется малым числом уровней яркости в нижних зонах.

Линейное распределение градаций яркости.
Равномерное распределение после применения гамма-кривой.

ISO и динамический диапазон

Несмотря на то, что в цифровой фотографии используется та же концепция светочувствительности фотоматериала, что и в фотографии плёночной, следует понимать, что происходит это исключительно в силу традиции, поскольку подходы к изменению светочувствительности в цифровой и плёночной фотографии различаются принципиально.

Повышение чувствительности ISO в традиционной фотографии означает замену одной плёнки на другую с более крупным зерном, т.е. происходит объективное изменение свойств самого фотоматериала. В цифровой камере светочувствительность сенсора жёстко задана его физическими характеристиками и не может быть изменена в буквальном смысле. При повышении ISO камера изменяет не реальную чувствительность сенсора, а всего лишь усиливает электрический сигнал, генерируемого сенсором в ответ на облучение и соответствующим образом корректирует алгоритм оцифровки этого сигнала.

Важным следствием этого является снижение эффективного динамического диапазона пропорционально повышению ISO, ведь вместе с полезным сигналом усиливается и шум. Если при ISO 100 оцифровывается весь диапазон значений сигнала – от нуля и до точки насыщения, то при ISO 200 уже только половина ёмкости фотодиодов принимается за максимум. С каждым удвоением чувствительности ISO верхняя ступень динамического диапазона как бы отсекается, а оставшиеся ступени, подтягиваются на её место. Именно поэтому использование сверхвысоких значений ISO лишено практического смысла. С тем же успехом можно осветлить фотографию в RAW-конвертере и получить сопоставимый уровень шумов. Разница между повышением ISO и искусственным осветлением снимка заключается в том, что при повышении ISO усиление сигнала происходит до поступления его в АЦП, а значит, шум квантования не усиливается, в отличие от собственных шумов сенсора, в то время как в RAW-конвертере усилению подлежат в том числе и ошибки АЦП. Кроме того, уменьшение диапазона оцифровки означает более точную дискретизацию оставшихся значений входного сигнала.

Кстати, доступное на некоторых аппаратах понижение ISO ниже базового значения (например, до ISO 50), отнюдь не расширяет динамический диапазон, а просто ослабляет сигнал вдвое, что равноценно затемнению снимка в RAW-конвертере. Эту функцию можно даже рассматривать как вредную, поскольку использование субминимального значения ISO, провоцирует камеру на увеличение экспозиции, что при оставшемся неизменным пороге насыщения сенсора повышает риск получить клиппинг в светах.

Истинная величина динамического диапазона

Существует ряд программ вроде (DxO Analyzer, Imatest, RawDigger и пр.) позволяющих измерить динамический диапазон цифрового фотоаппарата в домашних условиях. В принципе, в этом нет большой необходимости, поскольку данные для большинства камер можно свободно найти в интернете, например, на сайте DxOMark.com .

Стоит ли верить результатам подобных испытаний? Вполне . С той лишь оговоркой, что все эти тесты определяют эффективный или, если можно так выразиться, технический динамический диапазон, т.е. отношение между уровнем насыщения и уровнем шума матрицы. Для фотографа же в первую очередь важен полезный динамический диапазон, т.е. количество зон экспозиции, которые действительно позволяют запечатлеть какую-то полезную информацию.

Как вы помните, порог динамического диапазона задан уровнем шумов фотосенсора. Проблема в том, что на практике нижние зоны, формально уже входящие в динамический диапазон, содержат всё ещё слишком много шума, чтобы их можно было с толком использовать. Здесь многое зависит от индивидуальной брезгливости – приемлемый уровень шума каждый определяет для себя сам.

Моё субъективное мнение таково, что детали в тенях начинают выглядеть более-менее прилично при отношении сигнал/шум не меньше восьми. На этом основании я определяю для себя полезный динамический диапазон, как технический динамический диапазон минус примерно три ступени.

К примеру, если зеркальная камера согласно результатам достоверных тестов обладает динамическим диапазоном в 13 EV, что очень неплохо по сегодняшним меркам, то её полезный динамический диапазон будет составлять около 10 EV, что, в общем-то, тоже весьма недурно. Разумеется, речь идёт о съёмке в RAW, с минимальным ISO и максимальной разрядностью. При съёмке в JPEG динамический диапазон сильно зависит от настроек контраста, но в среднем следует отбросить ещё две-три ступени.

Для сравнения: цветные обращаемые фотоплёнки обладают полезной фотографической широтой в 5-6 ступеней; чёрно-белые негативные плёнки дают 9-10 ступеней при стандартных процедурах проявления и печати, а при определённых манипуляциях – вплоть до 16-18 ступеней.

Подытоживая вышесказанное, попробуем сформулировать несколько простых правил, соблюдение которых поможет вам выжать из сенсора вашей камеры максимум производительности:

  • Динамический диапазон цифрового фотоаппарата в полной мере доступен только при съёмке в RAW.
  • Динамический диапазон уменьшается с ростом светочувствительности, а потому избегайте высоких значений ISO, если в них нет острой необходимости.
  • Использование более высокой разрядности для RAW-файлов не увеличивает истинный динамический диапазон, но улучшает тональное разделение в тенях за счёт большего количества уровней яркости.
  • Exposure to the right . Верхние зоны экспозиции всегда содержат максимум полезной информации при минимуме шумов и должны использоваться наиболее эффективно. При этом не стоит забывать и об опасности клиппинга – пиксели, достигшие насыщения, абсолютно бесполезны.

И главное: не стоит излишне переживать по поводу динамического диапазона вашей камеры. С динамическим диапазоном у неё всё в порядке. Ваше умение видеть свет и грамотно управлять экспозицией – намного важнее. Хороший фотограф не станет жаловаться на недостаток фотографической широты, а постарается дождаться более комфортного освещения, или изменит ракурс, или воспользуется вспышкой, словом, будет действовать в соответствии с обстоятельствами. Я вам скажу больше: некоторые сцены только выигрывают из-за того, что не укладываются в динамический диапазон камеры. Часто ненужное обилие деталей просто необходимо спрятать в полуабстрактный чёрный силуэт, делающий фотографию одновременно лаконичнее и богаче.

Высокий контраст это не всегда плохо – нужно лишь уметь с ним работать. Научитесь эксплуатировать недостатки оборудования так же, как и его достоинства, и вы удивитесь, насколько расширятся ваши творческие возможности.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект , внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

Слово «фотография» происходит от греческих слов phos и graphe , что означает свет и рисование , соответственно. Таким образом, создание фотографии в самом строгом определении буквально означает «рисовать светом». Но рисование светом может быть достаточно сложным, учитывая количество света, с которым приходится работать!

Иногда вы можете оказаться в ситуации с большим количеством света, например, на открытом воздухе или в хорошо освещенном зале, а в другой раз свет настолько тусклый, что вам приходится создавать свой источник с помощью вспышки или оставлять затвор открытым на продолжительное время. Однако, вполне вероятно, что все закончится тем, что при съемке у вас будет света так же много, как и теней, а потому получить желаемый снимок будет очень сложно. К счастью, существует такой термин, который поможет вам в таких ситуациях – это динамический диапазон. Знание того, что он означает и как влияет на ваши фотографии, поможет в создании таких снимков, какие вы хотите.

Настройки сцены

Динамический диапазон имеет два основных применения в фотографии. Первое относится к сцене, которую вы фотографируете, а второе - более техническое по своей природе и помогает описать атрибуты сенсора камеры. (Это маленький прямоугольный микрочип, который используется камерой для создания изображений, как маленькая квадратик цифровой пленки).

В большинстве случаев фотограф старается сделать изображение с хорошей экспозицией, что означает, что светлые участки не слишком светлые, а темные – не слишком темные. В этом смысле динамический диапазон относится к общему количеству света, полученного в данной сцене. Если вы делаете фотографию с множеством светлых участков, наполненных светом, в сочетании с темными участками, окутанными тенями, то сцена может быть описана как имеющая широкий динамический диапазон (высокую контрастность). Если, однако, сцена освещена таким образом, что она не слишком светлая и не слишком темная, то можно сказать, что она имеет низкий динамический диапазон (низкая контрастность).

Этот снимок гуся имеет низкий динамический диапазон, то есть он равномерно экспонирован без каких-либо участков определенно светлых или темных.

Нет правильного и неправильного

Нет плохих или хороших сцен, но важно знать, когда вы идете фотографировать и в каких условиях освещения, чтобы вы могли планировать в соответствии с ними. Если вы снимаете в середине дня, то, скорее всего, получите очень яркое изображение с множеством теней, потому что солнечный свет интенсивный и находится над головой. Это называется сценой с высоким динамическим диапазоном, так как содержит очень светлые и очень темные элементы. Вы должны знать, как контролировать сцену, а также вашу камеру, чтобы получить желаемый снимок.

Этот снимок гуся был сделан в условиях , которые привели к высокому динамическому диапазону . Некоторые участки очень светлые, а другие скрыты в тенях.

Передайте свое виденье

При съемке важно учитывать динамический диапазон. Понимание ситуации, в которой вы фотографируете, является необходимым условием для получения желаемого результата. Рисуя светом, вы должны понимать, как он воздействует на ваши снимки.

Например, вот портрет, который я сделал на улице в солнечный день. Моя модель была хорошо освещена, но задний план позади нее был слишком ярким. Это привело к тому, что я не был доволен снимком. Внимание зрителя должно быть на ее лице, но яркий задний план отвлекает.

Гистограмма даст вам подсказки о динамическом диапазоне

Взгляд на гистограмму этого изображения подтверждает то, что я понял, взглянув на сцену. Большая часть данных рассредоточена слева и справа. Это означает, что сцена содержит как очень яркие, так и очень темные участки, а, следовательно, имеет широкий динамический диапазон.

Такие фотографии не обязательно неудавшиеся. Некоторые фотографы предпочитают широкий динамический диапазон, создавая ощущение контраста и пронзительности, которых зачастую не хватает в условиях равномерной экспозиции. Лично я не являюсь большим поклонником такого типа изображений, и в данном случае все было легко исправить, лишь немного повернувшись и использовав здание для более ровной экспозиции.

Опять же, я могу взглянуть на гистограмму в Lightroom и увидеть, что данные более не разделены в двух крайних точках, а распределены более равномерно. Кроме того, вы можете использовать режим Live View в вашей камере и видеть гистограмму в реальном времени во время съемки. Если вы видите, что она выглядит как две горы с долиной между ними, то это говорит о том, что сцена получится с гораздо большим контрастом, чем вы можете предпочесть.

HDR – высокий динамический диапазон

Один трюк, который некоторые фотографы используют в последнее время, называется HDR или обработка в высоком динамическом диапазоне. Это способ получить лучшее, комбинируя несколько композиций в одном изображении путем использования только нужных частей. Таким образом, в сцене, где есть очень яркие и темные участки, вы можете взять несколько снимков – недоэкспонированных и переэкспонированных, и объединить их в программе на вашем телефоне или компьютере, и в итоге получить изображение с ровной экспозицией. Единственный недостаток этого заключается в том, что финальное изображение может казаться неправдоподобным и искусственным для человеческих глаз (если техника HDR применена неправильно).

Технологии спасения

Человеческий глаз – это биологическое чудо. Даже современные цифровые камеры не могут приблизиться к тому, чтобы соответствовать нашим собственным окулярным инструментам. Сенсоры цифровых камер сегодня на шаг впереди своих предшественников, которые существовали 10 или даже 5 лет назад, но наши собственные глаза легко их превосходят, когда речь идет о динамическом диапазоне.

Предельный высокий динамический диапазон и проблема, которую он собой несет

В качестве примера попробуйте стать в комнате в солнечный день с большим количеством теней. Это создает сцену с высоким динамическим диапазоном, так как она содержит как очень яркие (за окном), так и очень темные участки (внутри комнаты). Ваши глаза все еще смогут отличить цвета и формы внутри комнаты, а также все, что находится за окном. Но попробуйте сделать фотографию. Вы получите изображение, экспонированное по светам (т.е., на улице) с темной комнатой, либо экспонированное по комнате (т.е., тени), и ничего за окном не будет видно.

Камера экспонировала по светам, оставив комнату в темноте.

Большинство камер передают сцену таким образом. Однако, техника HDR может быть использована, чтобы создать несколько изображений с разными экспозициями, которые можно комбинировать в один снимок с ровной экспозицией.

Камера экспонировала по теням, сделав вид за окном слишком ярким.

Технологии развиваются

Несмотря на то, что наши глаза превосходят любую камеру, в последнее время сенсоры цифровых камер гораздо лучше передают яркие и темные участки сцены, но только самые яркие и самые темные. В этом смысле термин «динамический диапазон» относится не к условиям освещения, а к возможностям сенсора камеры.

Некоторые модели, как Nikon D810 или Canon 5D Mark IV настолько продвинуты, что одно изображение в формате RAW может быть обработано с возможностью восстановить все данные, которые обычно утрачиваются. Например, когда я снимал этот восход, я экспонировал по светам и получил красивое чистое изображение с богатыми цветами на небе, но побочным эффектом было то, что земля стала совсем черной.

Благодаря технологии, заключенной в сенсоре Nikon 750, камера захватила гораздо больше данных, чем вы можете увидеть изначально. Я снимал в RAW при ISO 100, что означает, что я мог использовать преимущество большого количества данных, полученных в этом изображении, и восстановить их из теней.

То же изображение, но со значительно меньшими тенями после обработки в Lightroom .

Это преувеличенный пример и обычно я не рекомендую применять такую сильную обработку. Но я использую его, чтобы проиллюстрировать, какой динамический диапазон содержат современные сенсоры камер. Другой пример, пожалуй, более реалистичный, показывая важность сенсора, способного захватить высокий уровень динамического диапазона.

Первое изображение прямо из камеры (Nikon D7100). Хотя элементы заднего плана довольно хорошо экспонированы, белка и дерево слишком темные. Поскольку сцена сама по себе имеет высокий уровень динамического диапазона, то получить правильную экспозицию довольно сложно. К счастью, я мог использовать Lightroom, чтобы вытянуть большое количество деталей в тенях, которые могли бы быть утрачены, если сенсор имел бы низкий динамический диапазон.

Необработанный снимок с хорошо экспонированным небом и недоэкспонированными объектами.

Несколько щелчков мыши на моем компьютере позволило значительно улучшить оригинал.

Заключение

На протяжении многих лет производители камер были вовлечены в соревнование с тем, чтобы создать продукт, имеющий больше мегапикселей. Но в последнее время эта цифровая гонка вооружений зашла в тупик, так как 20-24 мегапикселя, которыми оснащены практически большинство камер, в высшей степени подходят практически для любой ситуации. Вместо этого фокус сместился на то, чтобы улучшить такие параметры, как ISO и расширить динамический диапазон сенсора. Это будет продолжаться до тех пор, пока сенсоры не станут настолько хороши, чтобы делать качественные фотографии в любых условиях.

Действительно, мы живем в такие удивительные времена, когда наши камеры могут создавать прекрасные картины светом, так сказать, практически в любом свете.

Последнее время в интернете появляется все больше и больше оригинальных изображений, визуально весьма нетипичных - красочных, предельно детализированных, напоминающих то ли картины художников-реалистов, то ли качественные иллюстрации к рисованным мультфильмам. Аббревиатура HDR с момента появления на свет прочно вошла в обиход виртуальных завсегдатаев, получив в их жаргоне транслитерацию ХДР. Кто не знал ее смысла, вторил знатокам, старательно выписывая заглавные буквы, дабы не спутать ХДР с ГДР или, чего доброго, с КГБ. Ну а сами знатоки тем временем раскручивали это новое направление в фотографии вовсю, создавая блоги, дискутирую в форумах, а главное - размещаясь в интернет - галереях. Собственно то, что скрывалось за данной аббревиатурой, лучше всего делало рекламу само по себе. Одни называли гиперреальные изображения заразной болезнью, другие - свидетельством вырождения классической фотографии, третьи - прогрессивным выражением передовых тенденций в современном цифровом исскустве.

Споры продолжаются и по сей день, принимая еще более крайние формы. Правда, скептики успеха и аутентичности нового направления постепенно начинают принимать вещи такими, как есть. А HDR-апологеты называют в качестве гипотетических пропагандистов новой техники исполнения векиких экспериментаторов Мэна Рэя и Ласло Моголи-Надя, которые, будь они живы в наше время, обязательно пришли бы к чему-то подобному. Интересна точка зрения одного из известных HDR-фотографов, Джеспера Кристенсена: «Новые технические возможности современных визуальных медиасредств, в том числе и фотографии, неизменно влекут за собой попытки и поиски авторов в соответствующих их духу направлениях новых обликов художественного выражения. Более того, переплетения на техническом уровне порождают и смешения на уровне сюжетном, эстетическом. Гибридные образы, подобные HDR, - это уже даже не феномен нашего времени, а однозначно - доминирующая тенденция будущего». Но к морально-эстетическим аспектам темы мы, вероятно, еще вернемся в будущих
публикациях. А пока мы коснемся, прежде всего, теоретических основ и практической стороны получения HDR-изображений.

Проблема динамического диапазона

Без теории - никуда. Но мы постараемся изложить ее доступными формулировками. Итак, английский термин HDR содержит в себе качественное определение одного давно знакомого нам понятия - динамический диапазон (дословный перевод HDR - «высокий динамический диапазон»). Разложим его по частям, начав с ключевого определения - «высокий». Что же такое динамический диапазон? Наверняка наши постоянные читатели представляют его себе хотя бы в общих чертах. Сейчас пришло время углубиться в детали. Верно, ДД в фотографии характеризует соотношение между максимально и минимально измеримой интенсивностью света. Но в реальном мире не существует чисто белого или чисто черного цвета, а есть лишь различные уровни интенсивности источников света, варьирующиеся вплоть до бесконечно малых величин. Из-за этого теория ДД усложняется, а сам термин, помимо характеристики реального соотношения интенсивности освещения фотографируемого сюжета, может быть применен к описанию цветовых градаций, воспроизводимых устройствами фиксации визуальной информации - камерами, сканерами, или устройствами ее вывода - мониторами, принтерами.

Человек пришел в этот мир полностью самодостаточным, он - идеальный «продукт» эволюционного природного развития. Применительно к фотографии это выражается в следующем: глаз человека способен различать диапазон интенсивности света, находящийся в пределах от 10-6 до 108 кд/м2 (кандел на кв. метр; кандела - единица измерения световой интенсивности, равная силе света, испускаемого в заданном направлении источником монохроматического излучения частотой 540х1012 Гц, которая в свою очередь соответствует частоте зеленого цвета).

Интересно взглянуть на следующие величины: интенсивность чистого звездного сияния равна лишь 10-3 кд/м2, закатного/рассветного света - 10 кд/м2, а освещенной прямым дневным светом сцены - 105 кд/м2. Яркость солнца приближается к миллиарду кандел на кв. метр. Таким образом, очевидно, что способности нашего зрения попросту феноменальны, особенно если противопоставить им возможности придуманных нами устройств вывода информации, например ЭЛТ-мониторов. Ведь они могут корректно передавать изображения с интенсивностью всего от 20 до 40 кд/м2. Но это так, для общей информации - для разминки и сравнения. Однако вернемся к динамическому диапазону, который касается нас, цифровых фотографов, в наибольшей мере. Его широта напрямую зависит от размеров ячеек сенсоров камер.

Чем они больше, тем шире ДД. В цифровой фотографии для описания его величины придуманы f-стопы (часто обозначаются как EV), каждый из которых соответствует изменению интенсивности света в два раза. Тогда, например, сюжет с разбросом уровня контрастности 1:1024 будет содержать 10 f-стопов динамического диапазона (210-1024). Зеркальная цифровая камера воспроизводит ДД, равный 8-9 f-стопов, плазменные ТВ-панели - до 11, а фотоотпечатки вмещают не больше 7 f-стопов. Тогда как соотношение максимальной и минимальной контрастности для вполне типичной сцены - яркий дневной свет за окном, плотная полутень в комнате - может достигать 1:100 000. Нетрудно подсчитать, что это будет соответствовать 16-17 f-стопам. Кстати, глаз человека одновременно воспринимает диапазон контрастности 1:10 000. Так как наше зрение фиксирует отдельно интенсивность освещения и его цвет, то одновременно доступная глазу гамма светов составляет 108 (10 000 оттенков яркости умножить на 10 000 оттенков цвета).

Проблемы битовой глубины

Обратите внимание - в нашу беседу закралось слово «цвет», присоединяясь к понятиям «интенсивность» и «контрастность». Посмотрим, чем оно является в контексте динамического диапазона. Переместимся на пиксельный уровень. Вообще-то говоря, каждый пиксель изображения имеет две основные световые характеристики - интенсивность и цвет. Это понятно. Как измерить количество уникальных цветов, составляющих колористическую гамму снимка? С помощью битовой глубины - числа нулей и единиц, битов, используемых для обозначения каждого из цветов. Применительно к ч/б изображению битовая глубина определяет количество оттенков серого. Картинки с большей битовой глубиной могут охватывать более значительное количество оттенков и цветов, поскольку содержат больше комбинаций нулей и единиц. Каждый цветной пиксель в цифровом изображении представляет собой определенную комбинацию трех цветов - красного, зеленого и синего, которые часто именуются цветовыми каналами. Диапазон их цветовой интенсивности указывается в битах на канал.

В то же время биты на пиксель (англ. сокращение - bpp) подразумевают общую сумму битов, имеющуюся в трех каналах и фактически представляют количество цветов в одном пикселе. Например, при записи цветовой информации в 8-битовых JPEG’ах (24 бита на пиксель) используется по восемь нулей и единиц для характеристики каждого из трех каналов. Интенсивность синего, зеленого и красного цветов обозначается 256 оттенками (градациями интенсивности). Число 256 удачно кодируется в двоичной системе и равняется 2:8. Если скомбинировать все три цвета, то один пиксель 8-битового изображения можно будет описывать 16 777 216 оттенками (256?256?256, или 224). Исследователи выяснили, что 16,7 млн оттенков вполне достаточно для передачи изображений фотографического качества. Отсюда и знакомый нам «true color». Будет ли изображение считаться имеющим более широкий ДД или нет, по большому счету зависит от его количества битов на цветовой канал. 8-битовые снимки считаются изображениями LDR (low dynamic range - узкий динамический диапазон). 16-битовые картинки, получаемые после конвертации RAW, также относят к категории LDR. Хотя их теоретический ДД мог бы равняться 1:65 000 (216). На самом деле, производимые большинством камер RAW-изображения имеют ДД не больше, чем 1:1000. К тому же при конвертации RAW используется одна стандартная тональная кривая, независимо от того, конвертируем мы файлы в 8- или 16-битные изображения. А поэтому, работая с 16 битами, вы получите больше четкости в определении оттенков/градаций и интенсивности, однако не получите ни «грамма» дополнительного ДД. Для этого вам понадобятся уже 32-битные изображения - 96 бит на пиксель! Их мы и будем называть High Dynamic Range Images - HDR(I).

Решение всех проблем

Снимки с расширенным динамическим диапазоном… Давайте еще раз нырнем в теорию битов. Всем знакомая модель RGB до сих пор является универсальной моделью описания изображений. Цветовая информация по индивидуальным пикселям кодируется в виде комбинации трех цифр, соответствующих уровням интенсивности оттенков. Для 8-битных изображений она будет находиться в пределах от 0 до 255, для 16-битных - от 0 до 65 535. Согласно модели RGB, черный цвет представляется как «0,0,0», то есть полное отсутствие интенсивности, а белый - как «255, 255, 255», то есть цвет с максимальной интенсивностью трех основных цветов. В кодировке допускается использование только целых чисел. Тогда как применение вещественных чисел - 5,6 или 7,4, да и любых дробных чисел с плавающей запятой, в рамках RGB-модели попросту недопустимо. Вот на таком противоречии и зиждется изобретение одного из американских компьютерных гениев Пола Дебевеца. В 1997 г. на ежегодной конференции специалистов в области компьютерной графики SIGGRAPH Пол изложил ключевые моменты своей новой научной работы, касающейся способов извлечения карт расширенного динамического диапазона из фотоснимков и их интеграции в визуализированные сцены с помощью нового графического пакета Radiance. Тогда-то впервые Пол и предложил съемку одного сюжета множество раз с изменяющимися значениями экспозиции и последующим объединением снимков в одно HDR-изображение. Грубо говоря, информация, которую содержат такие изображения, соответствует физическим величинам интенсивности и цвета. В отличие от традиционных цифровых изображений, состоящих из цветов, понимаемых устройствами вывода - мониторами, принтерами.

Указание величин освещенности вещественными числами теоретически снимает любые ограничения на вывод динамического диапазона. Скептики могут спросить, например, почему бы просто не добавлять все больше битов, охватывая ими самый экстремальный разброс световой и тональной контрастности? Дело в том, что в снимках с узким ДД для представления светлых тонов используется значительно большее количество битов, чем для темных. Поэтому по мере добавления битов пропорционально будет увеличиваться и часть тех из них, которые идут на более точное описание вышеуказанных тонов. А эффективный ДД практически останется неизменным. И напротив, числа с плавающей запятой, являясь линейными величинами, всегда пропорциональны фактическим уровням яркости. За счет этого биты равномерно распределяются по всему ДД, а не только концентрируются в области светлых тонов. Вдобавок такие числа фиксируют значения тонов с постоянной относительной точностью, ведь мантисса (цифровая часть), скажем, у 3,589?103 и 7,655?109, представлена четырьмя цифрами, хотя второе и больше первого в два миллиона раз.

Экстрабиты HDR-изображений позволяют передавать бесконечно широкий диапазон яркостей. Все могли бы испортить мониторы и принтеры, не признающие нового языка HDR, - у них своя фиксированная шкала яркостей. Но умные люди придумали такой процесс, как «tone mapping» - тональное сопоставление или отображение (дословно - создание карты), когда происходит перевод 32-битного HDR-файла в 8- или 16-битный, подогнанный под более ограниченный ДД устройств отображения. По сути, идея tone mapping базируется на решении проблемы потери деталей и тональностей в областях максимальной контрастности, их расширении с целью передачи всеобъемлющей цветовой информации, заложенной в 32-битном цифровом изображении.

С чего начинается удачный HDR

О тональных сопоставлениях очень хорошо знает один из наших четырех сегодняшних героев - итальянец Джанлука Несполи. Он, пожалуй, наиболее технически подкован. Помимо Photoshop, он с энтузиазмом экспериментирует с другими профессиональными графическими пакетами, в том числе и такими, которые были специально созданы для оптимизации HDR-результатов. Прежде всего, это Photomatix. Программа, соединяя несколько снимков с различной экспозицией, создает 32-битный файл с расширенным ДД, а затем подвергает его «тоун маппингу», применяя один из двух алгоритмов, называемых также операторами: глобальным или локальным. Процесс сопоставления по схеме глобального оператора сводится к обобщению интенсивностей пикселей вместе с тональными и прочими характеристиками изображения. В работе локального оператора, помимо этого, учитывается также и расположение каждого пикселя по отношению к остальным. В принципе, функция генерирования HDR-изображений вместе с сопутствующим «тоун маппингом» реализована и в Photoshop CS2. Ее вполне достаточно для заданий, которые реализуют датчанин Кристенсен и молодая фотохудожница из Санкт-Петербурга Микаэлла Райнрис. Наш четвертый герой - Густаво Оренштайн - по-прежнему не решил, какому из рабочих инструментов отдать предпочтение, а потому склонен к экспериментам с новыми программными HDR-ресурсами.

Чуть ниже мы рассмотрим практические нюансы работы с каждой из двух основных программ, обобщив рекомендации, полученные от этих фотоиллюстраторов новой волны. А пока прикинем, какой исходный материал необходим для получения изображений с расширенным ДД. Очевидно, что без нескольких снимков с различными значениями экспозиции не обойтись. Достаточно ли будет одного «сырого» RAW? Не совсем. Общий ДД, полученный после конвертации одного даже самого большого RAW-изображения с различными значениями уровня экспозиции, не может быть шире того динамического диапазона, который воспроизвела ваша камера. Это все равно, что разрезать ДД снимка в режиме RAW на несколько частей.

«Сырые» файлы кодируются 12 битами на канал, соответствующими разбросу контрастностей 1:4096. И только из-за неудобства 12-битной кодировки получаемым из RAW изображениям в формате TIFF присуждается 16 бит на канал. Одним RAW еще можно как-то обойтись, если речь не идет о высококонтрастной сцене. Съемка же нескольких кадров, предназначенных для дальнейшего объединения в одно целое, требует соблюдения определенных процедур настройки параметров отработки экспозиции, да и физического монтажа самой камеры. В принципе, и Photoshop, и Photomatix корректируют незначительные нестыковки при накладывании пиксельных массивов друг на друга, возникающие на снимках из экспозиционной серии вследствие отсутствия должной фиксации камеры. К тому же зачастую очень короткие выдержки и хорошая скорость съемки аппарата в режиме автоматического брекетинга (что особенно важно, если объект в кадре перемещается) позволяют компенсировать возможные перспективные искажения. Но все же крайне желательно свести их на нет, а для этого камере потребуется надежная опора в виде хорошего штатива.

Джеспер Кристенсен повсюду носит сверхлегкий карбоновый штатив Gitzo. Иногда для большей устойчивости подвешивает к его центральной колонне сумку, не прикасается к кнопке спуска затвора, используя пульт ДУ или таймер автоспуска, и блокирует зеркало своей Canon 20D. В настройках камеры главным, помимо сохранения постоянной диафрагмы для всех снимков, которые составят будущее HDR-изображение, является определение их количества и диапазона отработки экспозиции. Сначала, с помощью точечного замера камеры, если, конечно, таковой имеется, произведите считывание уровня освещенности самой темной и самой светлой областей сцены. Вот этот спектр ДД вам и необходимо записать с помощью нескольких экспозиций. Задайте минимальное значение светочувствительности ISO. Любые шумы в процессе «тоун маппинга» будут подчеркнуты еще больше. Про диафрагму мы уже сказали. Чем контрастнее сюжет, тем меньше должен быть экспозиционный интервал между снимками. Иногда может понадобиться до 10 кадров с интервалом 1 EV (каждая экспозиционная единица соответствует изменению уровня освещения в два раза). Но, как правило, достаточно 3-5 кадров RAW, отличающихся между собой двумя стопами освещенности. Большинство камер среднего уровня позволяют проводить съемку в режиме брекетинга экспозиции, вмещая в диапазон +/-2 EV три кадра. Функцию автоматического брекетинга легко обмануть, заставив снимать в диапазоне, который в два раза шире. Делается это так: выбираете подходящую центральную экспозицию, и прежде чем выстрелить три положенных кадра, задаете значение компенсации экспозиции -2 EV. После их отработки быстренько перемещаете ползунок компенсации к отметке +2 EV и выстреливаете еще одну очередь из трех кадров. Таким образом, после удаления продублированной центральной экспозиции у вас на руках останется пять кадров, покрывающих участок от +4 EV до -4 EV. ДД такой сцены будет приближаться к отметке 1:100 000.

с Photoshop в мир HDR

Доступный всем Photoshop делает доступными и изображения с расширенным динамическим диапазоном. В меню «Инструменты» находится команда Merge to HDR. Именно с нее и начинается путь к презентабельному HDR-изображению. Сначала все ваши объединенные экспозиции предстанут в виде одного снимка в окошке превью - это уже 32-битная картинка, однако монитор пока не в состоянии отобразить всех ее преимуществ. Помните, «глупый» монитор является всего лишь 8-битным устройством вывода. Ему, как нерадивому школьнику, нужно все разложить по полочкам. Но гистограмма в правом углу окошка уже многообещающе растянулась, став похожей на горную вершину, что говорит обо всем потенциале ДД, содержащемся в только что созданном изображении. Ползунок в нижней части гистограммы позволяет увидеть детали в том или ином тональном диапазоне. На данной стадии ни в коем случае не следует задавать битовую глубину меньше 32. Иначе программа сразу же обрежет тени и света, ради которых, собственно, весь этот сыр-бор.

Получив от вас добро на создание очередного HDR-чуда, Photoshop сгенерирует изображение, открыв его в основном рабочем окне программы. Скорость реагирования ее алгоритмов будет зависеть от мощности вашего процессора и объема оперативной памяти компьютера. Однако при всех ужасающих перспективах получить на выходе что-то очень массивное, многомегабайтное 32-битный HDR (при условии, что он собран, например, из трех снимков) будет «весить» только около 18 Мб, в противоположность одному 30-Мб стандартному TIFF’у.

Фактически, до этого момента наши действия были лишь частью подготовительного этапа. Теперь пришло время инициировать процесс соотнесения динамических диапазонов полученного HDR-изображения и монитора. 16 бит на канал в меню Mode - наш следующий шаг. Photoshop осуществляет «тоун маппинг», используя четыре различных метода. Три из них - экспозиция и гамма, сжатие светов и выравнивание гистограммы - утилизируют менее изощренные глобальные операторы и позволяют настраивать вручную только яркость и контрастность снимка с расширенным ДД, сужают ДД, пытаясь сохранить контраст, или же урезают света так, чтобы они вошли в диапазон яркостей 16-битного изображения.

Наибольший интерес представляет четвертый способ - локальная адаптация. Микаэлла Райнрис и Джеспер Кристенсен работают именно с ним. Поэтому о нем немного подробнее. Основной инструмент здесь - тональная кривая и гистограмма яркостей. Смещая кривую, разбитую якорными точками, вы сможете перераспределить уровни контрастности по всему ДД. Вероятно, понадобится обозначить несколько тональных областей вместо традиционного разделения на тени, средние тона, света. Принцип настройки данной кривой абсолютно идентичен тому, на котором зиждется фотошоповский инструмент Curves. А вот функции ползунков Radius и Threshold в данном контексте весьма специфические. Они контролируют уровень изменения локального контраста - то есть улучшают детализацию в масштабе небольших областей снимка. Тогда как кривая, напротив, корректирует параметры ДД на уровне всего изображения. Радиус указывает количество пикселей, которые оператор «тоун маппинга» будет считать локальными. Например, радиус в 16 пикселей означает, что области подгонки контрастности будут очень плотными. Тональные сдвиги примут явно заметный, слишком обработанный характер, HDR-изображение хотя и расцветет богатством деталей, но предстанет абсолютно неестественным, лишенным и намека на фотографию. Большой радиус тоже не выход - картинка получится более натуральной, но скучноватой в плане деталей, лишенной жизни. Второй параметр - порог - устанавливает предел разницы яркостей соседних пикселей, который позволит включить их в одну и ту же локальную область регулировки контрастности. Оптимальный диапазон значения порога - 0,5-1. После освоения вышеуказанных компонентов процесс «тоун маппинга» можно считать благополучно завершенным.

С Photomatix в мир HDR

Специально для всех нуждающихся в фотоснимках с очень широким ДД в 2003 г. французы придумали программку Photomatix, последняя версия которой сегодня доступна для бесплатного скачивания (полностью функциональна, только оставляет на снимке свой «водяной знак»). Многие любители HDR-затравки считают ее более расторопной, когда дело касается подгонки тональностей и интенсивностей 32-битного изображения с урезанными параметрами битовой глубины устройств вывода. К ним принадлежит и итальянец Джанлука Несполи. Приведем его слова: «HDR-картинки, генерированные этой программой, отличает лучшая проработка деталей неба и деревьев, они не выглядят слишком “пластмассовыми”, демонстрируют более высокий уровень контрастности и цветовой тональности. Единственный минус Photomatix - усиление вместе со всеми достоинствами и некоторых недостатков изображения, таких как шумы и артефакты JPEG-компрессии». Правда, компания-разработчик MultimediaPhoto SARL обещает устранить и эти нюансы, а кроме того, c теми же шумами, например,
неплохо справляются программы вроде Neat Image.

Помимо возможности осуществлять «тоун маппинг», Photomatix располагает несколькими дополнительными настройками уровня экспозиции, а ее алгоритм соотнесения тональностей можно применять даже к 16-битным TIFF’ам. Так же, как и в Photoshop, сначала на основе отдельных снимков с варьирующей экспозицией необходимо создать 32-битное HDR-соединение. Для этого у программы есть опция Generate HDR. Подтвердите значения экспозиционного интервала, выберите стандартную тональную кривую (рекомендовано) - и Photomatix готов будет представить вам свою версию HDR-изображения. Файл будет «весить» примерно столько же, сколько и фотошоповская версия, и иметь то же расширение - .hdr или.exr, - под которым его можно сохранить до начала процесса «тоун маппинга». Последний инициируется путем выбора соответствующей команды в главном меню HDRI программы. В его рабочем окошке вмещается много различных настроек, способных привести в замешательство. На самом деле, ничего сложного здесь нет. Гистограмма показывает распределение яркостей пропущенного через «тоун маппинг» снимка. Ползунок Strength определяет уровень локального контраста; параметры Luminosity и Color Saturation отвечают соответственно за яркость и цветовую насыщенность. Точки отсечения светлой и темной областей гистограммы вполне можно оставить по умолчанию. Photomatix предлагает всего четыре установки функции сглаживания контрастности в противоположность более точным настройкам Photoshop в пределах от 1 до 250. По правде говоря, такой уровень контроля не всегда желателен. Вряд ли непрофессионалу важна та разница, которая будет присутствовать между значениями радиуса сглаживания, скажем, 70, 71 и 72. Настройка микроконтраста обращается к локальному уровню, однако в случае использования изначально шумных или насыщенных всякого рода артефактами снимков, ею не следует злоупотреблять.

Когда "тоун маппинг" примирит монитор с HDR-изображением...

…можно подключать предыдущие навыки по обращению с Photoshop и редактировать HDR-изображение на свой вкус, страх и риск. Помните, пока что отношение фотопублики к продуктам искусственно созданной широкодиапазонной природы неоднозначное. «Если хотите иметь успех на этой ниве, постарайтесь выработать свой оригинальный стиль, а не упражняйтесь в повторении, - напутствует Микаэлла Райнрис. - В таком тонком и повсеместно копируемом на любительском уровне деле, как HDR, это особенно важно».

В постобработке, следующей за процессом «тоун маппинга», фотохудожница отдает предпочтение маскам слоев и размытиям на них (инструменты группы Blur, в частности - размытие по Гауссу). Из режимов наложения слоев Микаэлла любит Overlay и Color, позволяющие достигать требуемого уровня контрастности. Густаво Оренштайн и Джеспер Кристенсен добавляют сюда еще и Soft Overlay. Джеспер работает на таком слое кисточками инструментов «осветлитель» и «затемнитель». Первый помогает четче прорисовать детали в тенях, второй - создать драматическую контрастность. Без них в своей работе не обходится и Микаэлла, и Густаво. Тогда как Джанлука предпочитает затемнителю и осветлителю обычную рисовальную кисточку в режиме наложения слоев Overlay с минимальным уровнем прозрачности (opacity). Для придания изображениям должной цветовой насыщенности он работает с настройками hue/saturation и selective color. Джанлука создает дубликат слоя; к нему он применяет фильтр «размытие по Гауссу» (радиус 4 пикселя, показатель прозрачности - 13 %) и накладывает в режиме multiply или overlay. Затем он вызывает еще один дубликат и занимается уровнями насыщенности отдельных цветов в нем, особенно - белого, черного и нейтрального серого, которые и создают дополнительное ощущение широкого динамического диапазона. Из четверых наших экспертов только Джеспер Кристенсен активно использует цифровые графические планшеты Wacom, но мог бы прекрасно обходиться и без них - устройства нужны ему для других проектов.

Вообще говоря, постобработка HDR-изображений - вопрос, конечно, сугубо личный, зависящий не столько от технических возможностей программы, сколько от субъективного творческого видения художника. И было бы бессмысленно рассказывать о сотнях индивидуальных предпочтений каждого из сегодняшних авторов. Кто-то, как Микаэлла, стремится к простоте в выборе инструментов реализации визуальных задач. Для нее, например, фотошоповский shadow/highlight дороже всех самых дорогих и изощренных плагинов. А кто-то, вроде маэстро Оренштайна, продолжает экспериментировать с Photomatix, HDR Shop, Light Gen и тому подобными расширителями ДД. Бывалым пользователям графических редакторов, вероятно, важнее сконцентрироваться не на освоении новых программных продуктов, а на выработке собственного стиля и воспитании в себе целостного творческого начала. Тогда как новичкам хотелось бы посоветовать не потеряться в технических моментах, а постараться начать с формирования высокого художественного видения и места работ этого изумительного и перспективного жанра фотоиллюстрации.

Этой статьёй мы начинаем серию публикаций о весьма интересном направлении в фотографии: High Dynamic Range (HDR) — фотографии с высоким динамическим диапазоном. Начнём, конечно же, с азов: разберёмся с тем, что такое HDR-изображения и как правильно их снимать, учитывая ограниченные возможности наших камер, мониторов, принтеров и т.д.

Давайте начнем с основного определения Динамического диапазона.

Динамический диапазон определяется отношением темных и ярких элементов, которые важны для восприятия вашей фотографии (измеряется уровнем яркости).

Это не абсолютный диапазон, так как он, во многом, зависит от ваших личных предпочтений и того, какого результата вы хотите добиться.

Например, есть множество замечательных фотографий с очень насыщенными тенями, без каких-либо деталей в них; в этом случае можно говорить о том, что на такой фотографии представлена только нижняя часть динамического диапазона сцены.

  • ДД снимаемой сцены
  • ДД фотокамеры
  • ДД устройства вывода изображения (монитор, принтер и т.д.)
  • ДД человеческого зрения

Во время фотосъёмки ДД трансформируется дважды:

  • ДД снимаемой сцены > ДД устройства захвата изображения (здесь мы подразумеваем под ним фотокамеру)
  • ДД устройства захвата изображения > ДД устройства вывода изображения (монитор, фотоотпечаток и т.д.)

Следует помнить, что любая деталь, которая будет потеряна на этапе захвата изображения – никогда не сможет быть восстановлена в последующем (это мы рассмотрим подробнее чуть позже). Но, в конце концов, важно лишь то, чтобы полученное изображение, отображаемое монитором, или распечатанное на бумаге радовало ваш взгляд.

Типы динамического диапазона

Динамический диапазон снимаемой сцены

Какие из самых ярких и самых темных деталей сцены вы хотели бы запечатлеть? Ответ на этот вопрос полностью зависит только от вашего творческого решения. Вероятно, лучший способ усвоить это – рассмотреть несколько кадров, в качестве образца.

Например, на фотографии выше, нам хотелось запечатлеть детали как внутри помещения, так и за его пределами.

На этой фотографии, мы также хотим показать детали и в светлых и в тёмных областях. Однако, в этом случае детали в светлых областях нам более важны, чем детали в тенях. Дело в том, что области светов, как правило, хуже всего смотрятся при фотопечати (зачастую, они могут выглядеть как простая белая бумага, на которой и распечатан снимок).

В подобных сценах динамический диапазон (контрастность) может достигать значения 1:30 000 и более – особенно, если вы снимаете в тёмной комнате с окнами, через которые проникает яркий свет.

В конечном счете, HDR-фотография в подобных условиях – оптимальный вариант для получения снимка, радующего ваш взор.

Динамический диапазон фотокамеры

Если бы наши камеры были способны запечатлеть высокий динамический диапазон сцены за 1 снимок, мы бы не нуждались в методах, описанных в этой и последующих статьях, посвященных HDR. К сожалению, суровая действительность такова, что динамический диапазон фотокамер значительно ниже, чем во многих сценах, для съёмки которых они используются.

Как определяется динамический диапазон фотокамеры?

ДД камеры измеряется от самых ярких деталей кадра до деталей теней, превышающих уровень шума.

Ключевым моментом в определении динамического диапазона камеры является то, что мы измеряем его от видимых деталей области светов (необязательно и не всегда чисто белых), до деталей теней, чётко различимых и не теряющихся среди большого количества шума.

  • Стандартная современная цифровая зеркальная камера может охватить диапазон в 7-10 стопов (в диапазоне от 1:128 до 1:1000). Но не стоит быть чересчур оптимистичным и доверять только цифрам. Некоторые фотографии, несмотря на присутствие внушительного количества шумов на них, в большом формате смотрятся великолепно, другие же – теряют свою привлекательность. Всё зависит от вашего восприятия. Ну и, конечно, размер печати или отображения вашего фото также имеет значение
  • Диапозитивная фотоплёнка способна охватить диапазон в 6-7 стопов
  • Динамический диапазон негативной плёнки составляет около 10-12 стопов
  • Функция восстановления светов в некоторых RAW-конвертерах может помочь получить дополнительно до +1 стопа.

За последнее время технологии, применяемые в зеркалках шагнули далеко вперёд, но ожидать чудес, всё же, не следует. На рынке можно отыскать не так много камер, способных захватить широкий (по сравнению с другими камерами) динамический диапазон. Ярким примером может служить Fuji FinePixS5 (в настоящее время не выпускается), матрица которой имела двухслойные фотоэлементы, что позволило увеличить ДД, доступный S5 на 2 стопа.

Динамический диапазон устройства вывода изображения

Из всех этапов цифровой фотографии, вывод изображения, как правило, демонстрирует самый низкий динамический диапазон.

  • Статический динамический диапазон современных мониторов варьируется в пределах от 1:300 до 1:1000
  • Динамический диапазон HDR-мониторов может доходить до 1:30000 (просмотр изображения на таком мониторе может вызвать ощутимый дискомфорт для глаз)
  • Динамический диапазон фотопечати большинства глянцевых журналов составляет около 1:200
  • Динамический диапазон фотоотпечатка на качественной матовой бумаге не превышает 1:100

У вас вполне резонно может возникнуть вопрос: зачем при съёмке стараться захватить большой динамический диапазон, если ДД устройств вывода изображения настолько ограничен? Ответ заключается в компрессии динамического диапазона (как вы узнаете далее, тональное отображение также связана с этим).

Важные аспекты человеческого зрения

Поскольку свои работы вы демонстрируете другим людям, вам будет небесполезным усвоить некоторые основные аспекты восприятия окружающего мира человеческим глазом.

Человеческое зрение работает не так, как наши фотокамеры. Все мы знаем, что наши глаза адаптируются к освещению: в темноте зрачки расширяются, а при ярком свете – сужаются. Обычно, этот процесс занимает достаточно продолжительное время (он вовсе не моментальный). Благодаря этому, без специальной подготовки, наши глаза могут охватить динамический диапазон в 10 стопов, а в целом нам доступен диапазон около 24 стопов.

Контраст

Все детали, доступные нашему зрению, базируются не на абсолютной насыщенности тона, а на основе контрастов контуров изображения. Человеческие глаза очень чувствительны даже к самым незначительным изменениям контрастности. Вот почему концепция контрастности столь важна.

Общий контраст

Общий контраст определяется перепадом яркости между самыми темными и самыми светлыми элементами изображения в целом. Такие инструменты, как Кривые (Curves) и Уровни (Levels) изменяют только общий контраст, поскольку все пиксели с одним уровнем яркости они обрабатывают одинаково.

В общем контрасте выделяют три основных области:

  • Средние тона
  • Света

Совокупность контрастов этих трёх областей определяет общий контраст. Это означает, что если вы увеличите контрастность средних тонов (что бывает очень часто), вы потеряете общий контраст в области светов/теней при любом способе вывода изображения, зависящего от общего контраста (например, при печати на глянцевой бумаге).

Средние тона, как правило, отображают основной предмет съёмки. Если уменьшить контрастность области средних тонов, то ваше изображение будет блеклым. И, наоборот, при увеличении контрастности средних тонов, тени и света станут менее контрастными. Как вы увидите чуть ниже, изменение локального контраста может улучшить общее отображение вашей фотографии.

Локальный Контраст

Следующий пример поможет понять концепцию локального контраста.

Круги, расположенные друг напротив друга, в каждой из строк имеют абсолютно идентичные уровни яркости. Но правый верхний круг выглядит намного ярче, чем тот, что слева. Почему? Наши глаза видят разницу между ним и окружающим его фоном. Правый выглядит ярче на тёмно-сером фоне, по сравнению с таким же кругом, размещённом на более светлом фоне. Для двух кругов же, расположенных ниже, верно обратное.

Для наших глаз абсолютная яркость представляет меньший интерес, чем её отношение к яркости близлежащих объектов.

Такие инструменты, как Заполняющий свет (FillLight) и Резкость (Sharpening) в Lightroom, и Тени/Света (Shadows/Highlights) в Photoshop действуют локально и не охватывают сразу все пиксели одинакового уровня яркости.

Dodge (Затемнить) и Burn (Осветлить) – классические инструменты для изменения локального контраста изображения. Dodge&Burn – это по-прежнему один из оптимальных методов улучшения изображения, потому, что наши собственные глаза, естественно, неплохо могут судить о том, как та или иная фотография будет выглядеть в глазах стороннего зрителя.

HDR: управление динамическим диапазоном

Еще раз вернёмся к вопросу: для чего же тратить усилия и снимать сцены с динамическим диапазоном шире, чем ДД вашей камеры или принтера? Ответ заключается в том, что мы можем сделать кадр с высоким динамическим диапазоном и позже вывести его изображение через устройство с меньшим ДД. В чём суть? А суть в том, что в ходе этого процесса вы не потеряете никакой информации о деталях изображения.

Конечно, проблему съёмки сцен с высоким динамическим диапазоном можно решить и другими путями:

  • Например, некоторые фотографы просто ждать пасмурную погоду, и не фотография вовсе, когда ДД сцены слишком высок
  • Использовать заполняющую вспышку (при пейзажной фотосъёмке этот способ неприменим)

Но во время длительного (или не очень) путешествия вы должны иметь максимум возможностей для фотосъёмки, так что нам с вами следует найти более эффективные решения.

К тому же окружающее освещение может зависеть не только от погоды. Для лучшего понимания этого, давайте вновь рассмотрим несколько примеров.

Фото выше весьма тёмное, но, несмотря на это, на нём запечатлён невероятно широкий динамический диапазон света (было снято 5 кадров с шагом в 2 стопа).

На этой фотографии свет, падающий из окон справа был весьма ярким, по сравнению с тёмным помещением (в нём не было источников искусственного освещения).

Так что ваша первая задача – запечатлеть на камеру полный динамический диапазон сцены, исключив потерю каких-либо данных.

Отображение динамического диапазона. Сцена с низким ДД

Давайте, по традиции, сначала посмотрим на схему фотосъёмки сцены с низким ДД:

В рассматриваемом случае при помощи камеры мы можем охватить динамический диапазон сцены за 1 кадр. Незначительные потери деталей в области теней, как правило, не являются существенной проблемой.

Процесс отображение на этапе: фотокамера – устройство вывода, в основном, осуществляется с помощью тональных кривых (обычно, сжимающих света и тени). Вот основные инструменты, которые для этого используются:

  • При конвертации RAW: отображение линейной тональности камеры через тональные кривые
  • Инструменты Photoshop: Curvesи Levels
  • Инструменты Dodge и Burn в Lightroom и Photoshop

Примечание: во времена плёночной фотографии. Негативы увеличивали и печатали на бумаге различных классов (или на универсальной). Различие классов фотобумаги заключалось в контрасте, который они могли воспроизвести. Это классический метод тонального отображения. Тональное отображение – может звучать, как что-то новое, но это далеко не так. Ведь только на заре фотографии схема отображения снимка выглядела: сцена – устройство вывода изображения. С тех пор последовательность остаётся неизменной:

Сцена > Захват изображения > Вывод изображения

Отображение динамического диапазона. Сцена с более высоким ДД

Теперь давайте рассмотрим ситуацию, когда мы снимаем сцену с более высоким динамическим диапазоном:

Вот пример того, что вы можете получить в результате:

Как мы видим, камера может захватить только часть динамического диапазона сцены. Ранее мы уже отмечали, что потеря деталей в области светов – редко допустима. Это означает, что нам необходимо изменить экспозицию для того, чтобы защитить область светов от потери деталей (конечно, необращая внимание на зеркальные блики, например, отражений). В результате мы получим следующее:

Теперь мы получили существенную потерю деталей в области теней. Возможно, в некоторых случаях это может выглядеть достаточно эстетично, но только не тогда, когда вы хотите отобразить на фото и более тёмные детали.

Ниже приведен пример того, как может выглядеть фотография, при уменьшении экспозиции для сохранения деталей в области светов:

Захват высокого динамического диапазона при помощи брекетинга экспозиции.

Так как же вы можете захватить весь динамический диапазон при помощи камеры? В этом случае решением будет Брекетинг экспозиции: съёмка нескольких кадров с последовательным изменением уровнем экспозиции (EV) так, чтобы эти экспозиции частично перекрывали друг друга:

В процессе создания HDR-фотографии вы захватываете несколько различных, но взаимосвязанных экспозиций, охватывающих весь динамический диапазон сцены. В целом экспозиции отличаются на 1-2 стопа (EV). Это означает, что необходимое число экспозиций определяется следующим образом:

  • ДД сцены, который мы хотим захватить
  • ДД, доступный для захвата камерой за 1 кадр

Каждая последующая экспозиция может увеличиваться на 1-2 стопа (в зависимости от брекетинга, выбранного вами).

Теперь давайте выясним, что вы можете сделать с полученными снимками с разной экспозицией. На самом деле, вариантов немало:

  • Объединить их в HDR-изображение вручную (Photoshop)
  • Объединить их в HDR-изображение автоматически при помощи Automatic Exposure Blending (Fusion)
  • Создать HDR-изображение в специализированном программном обеспечении для обработки HDR

Ручное объединение

Ручное объединение снимков с различной экспозицией (используя, по сути, технику фотомонтажа) почти столь же старо, как искусство фотографии. Несмотря на то, что в настоящее время Photoshop и делает этот процесс более лёгким, но он всё еще может быть достаточно утомительным. Имея альтернативные варианты, вы, вряд ли, прибегнете к объединению снимков вручную.

Автоматическое смешивание экспозиций (также называемое Fusion)

В этом случае за вас всё сделает программное обеспечение (например, при использовании Fusion в Photomatix). Программа выполняет процесс объединения кадров с различной экспозицией и генерирует конечный файл изображения.

Применение Fusion обычно дает очень хорошие изображения, которые выглядят более «естественными»:

Создание HDR-изображений

Любой процесс создания HDR включает два этапа:

  • Создания HDR изображения
  • Тональная конвертация HDR-изображения в стандартное 16-битное изображение

При создании HDR-изображений вы, на самом деле, преследуете ту же цель, но идёте иным путём: вы не получаете конечное изображение сразу же, а снимаете несколько кадров с различной экспозицией, а затем объединяете их в HDR-изображение.

Новшество в фотографии (которая уже не может обходиться без компьютера): 32-битные HDR-изображения с плавающей точкой, позволяющие хранить практически бесконечный динамический диапазон тональных значений.

В ходе процесса создания HDR-изображения, программа сканирует все тональные диапазоны, полученные в результате брекетинга, и генерирует новое цифровое изображение, включающее совокупный тональный диапазон всех экспозиций.

Примечание: когда появляется что-то новое, всегда найдутся люди, утверждающие, что это уже не ново, и они делали это еще до своего рождения. Но расставим все точки над i: способ создания HDR-изображения, описанный здесь, достаточно новый, поскольку для его использования необходим компьютер. И с каждым годом результаты, получаемые при помощи этого способа, становятся всё лучше и лучше.

Итак, ещё раз вернёмся к вопросу: зачем создавать изображения с высоким динамическим диапазоном, если динамический диапазон устройств вывода настолько ограничен?

Ответ заключается в тональном отображении – процессе конвертации тональных значений широкого динамического диапазона в более узкий динамический диапазон устройств вывода изображений.

Именно поэтому тональное отображение для фотографов является самым важным и непростым этапом создания HDR-изображения. Ведь вариантов тонального отображения одно и того же HDR-изображения может быть множество.

Говоря о HDR-изображениях, нельзя не упомянуть о том, что они могут быть сохранены в различных форматах:

  • EXR (расширение файла: .exr, широкая цветовая гамма и точная цветопередача, ДД около 30 стопов)
  • Radiance (расширение файла: .hdr, менее широкая цветовая гамма, огромный ДД)
  • BEF(собственный Формат UnifiedColour, направленный на получение более высокого качества)
  • 32-битный TIFF (очень большие файлы из-за низкой степенью сжатия, в силу этого редко применяется на практике)

Для создания HDR-изображений вам потребуется программное обеспечение, поддерживающее создание и обработку HDR. К таким программам можно отнести:

  • Photoshop CS5 и старше
  • HDRsoft в Photomatix
  • Unified Color’s HDR Expose или Express
  • Nik Software HDR Efex Pro 1.0 и старше

К сожалению, все перечисленные программы генерируют различные HDR-изображения, которые могут отличаться (подробнее об этих аспектах мы поговорим позже):

  • Цветом (оттенком и насыщенностью)
  • Тональностью
  • Сглаживанием
  • Обработкой шумов
  • Обработкой хроматических аберраций
  • Уровнем подавления ореолов

Основы Тонального отображения

Как и в случае со сценой с низким динамическим диапазоном, при отображении сцены с высоким ДД мы должны сжать ДД сцены до выходного ДД:

В чём же отличие рассмотренного примера с примером сцены с низким динамическим диапазоном? Как видите, в этот раз, тональная компрессия более высока, так что классический способ с тональными кривыми уже не работает. Как обычно, прибегнем к самому доступному способу показать основные принципы тонального отображения – рассмотрим пример:

Чтобы продемонстрировать принципы тонального отображения, воспользуемся инструментом HDR Expose программы Unified Color, поскольку он позволяет выполнять с изображением различные операции по модульному принципу.

Ниже вы можете увидеть пример генерации HDR-изображения без внесения каких-либо изменений:

Как видите, тени вышли достаточно тёмными, а области светов – пересвечены. Давайте взглянем, что нам покажет гистограмма HDR Expose:

Как видите, область светов стала выглядеть гораздо лучше, но в целом изображение выглядит слишком тёмным.

То, что нам нужно в этой ситуации – это объединить компенсацию экспозиции и снижение общего контраста.

Теперь общий контраст в порядке. Детали в области светов и теней не теряются. Но, к сожалению, изображение выглядит довольно плоским.

Во времена до эпохи HDR, эта проблема могла быть решена при помощи использования S-образной кривой в инструменте Кривые (Curves):

Однако, создание хорошей S-кривой займёт некоторое время, а в случае ошибки, легко, может привести к потерям в области светов и теней.

Поэтому инструменты тонального отображения предусматривают другой путь: улучшение локального контраста.

В полученном варианте детали в светах сохранены, тени не обрезаны, а плоскостность изображения исчезла. Но и это ещё не окончательный вариант.

Для придания фотографии завершённого вида оптимизируем изображение в Photoshop CS5:

  • Настроем насыщенность
  • Оптимизируем контраст с помощью DOPContrastPlus V2
  • Увеличим резкость с помощью DOPOptimalSharp

Основное различие между всеми инструментами для работы с HDR заключаются в алгоритмах, используемых ими для понижения контраста (например, алгоритмы определения того, где заканчиваются общие настройки и начинаются локальные).

Не существует правильных или неправильных алгоритмов: всё зависит от ваших собственных предпочтений и вашего стиля фотографии.

Все основные инструменты для работы с HDR, предлагаемые рынком, также позволяют контролировать и другие параметры: детализация, насыщенность, баланс белого, удаление шума, тени/света, кривые (большинство из этих аспектов мы подробно рассмотрим позже).

Динамический диапазон и HDR. Резюме.

Способ расширения динамического диапазона, который способна захватить камера, весьма стар, поскольку ограниченность возможностей камер известна очень давно.

Ручное или автоматическое наложение изображений предлагает очень мощные способы конвертации широкого динамического диапазона сцены до динамического диапазона, доступного вашему устройству вывода изображения (монитору, принтеру и т.д.).

Создание бесшовных объединённых изображений вручную может быть очень сложным и трудоемким: бесспорно, метод Dodge & Burn– незаменим для создания качественного отпечатка изображения, но он требует длительной практики и усердия.

Автоматическая генерация HDR-изображений является новым способом преодолеть старую проблему. Но при этом алгоритмы тонального отображения сталкиваются с проблемой сжатия высокого динамического диапазона до динамического диапазона изображения, которое мы можем просмотреть на мониторе или в распечатанном виде.

Различные методы тонального отображения могут дать совершенно различные результаты, и выбор метода, дающего желаемый результат, зависит только от фотографа, то есть от вас.

Больше полезной информации и новостей в нашем Telegram-канале «Уроки и секреты фотографии» . Подписывайся!

Динамический диапазон в фотографии описывает соотношение между максимальной и минимальной измеримой интенсивностью света (белым и чёрным, соответственно). В природе не существует абсолютно белого или чёрного - только различные степени интенсивности источника света и отражательной способности предмета. В силу этого концепция динамического диапазона усложняется и зависит от того, описываете ли вы записывающий прибор (такой как камера или сканер), воспроизводящий (такой как отпечаток или дисплей компьютера) или собственно предмет.

Как и при управлении цветом, каждое устройство в приведенной выше цепи передачи изображения имеет свой собственный динамический диапазон. В отпечатках и дисплеях ничто не может стать ярче, чем белизна бумаги или максимальная интенсивность пикселя, соответственно. По сути, ещё один прибор, который не был упомянут выше, это наши глаза, у которых тоже есть свой собственный динамический диапазон. Передача информации из изображения между устройствами таким образом может повлиять на его воспроизведение. Следовательно, концепция динамического диапазона полезна для относительного сравнения исходной сцены, вашей камеры и изображения на вашем экране или на отпечатке.

Влияние света: освещённость и отражение

Сцены с высокими вариациями яркостей отражённого света, например, содержащие чёрные объекты вдобавок к сильным отражениям, могут в действительности иметь более широкий динамический диапазон, чем сцены с большой вариативностью падающего света. В любом из этих случаев фотографии могут запросто превысить динамический диапазон вашей камеры, особенно если не следить за экспозицией.

Точное измерение интенсивности света, или освещённости, следовательно, является критическим для оценки динамического диапазона. Здесь мы используем термин «освещённость», чтобы определить исключительно падающий свет. Как освещённость, так и яркость обычно измеряются в канделах на квадратный метр (кд/м 2). Приблизительные значения для часто встречающихся источников освещения приведены ниже.

Здесь мы видим, что возможны большие вариации в падающем свете, поскольку вышеприведенная диаграмма отградуирована в степенях десяти. Если сцена неравномерно освещена как прямым, так и рассеянным солнечным светом, одно это может невероятно расширить динамический диапазон сцены (как видно из примера с закатом в каньоне с частично освещённой скалой).

Цифровые камеры

Несмотря на то, что физический смысл динамического диапазона в реальном мире - это всего лишь соотношение между наиболее и наименее освещёнными участками (контраст), его определение становится более сложным при описании измерительных приборов, таких как цифровые камеры и сканеры. Вспомним из статьи о сенсорах цифровых камер , что свет сохраняется каждым пикселем в своего рода термосе. Размер каждого такого термоса, в дополнение к тому как оценивается его содержимое, и определяет динамический диапазон цифровой камеры.

Фотопиксели удерживают фотоны, как термосы сохраняют воду. Следовательно, если термос переполняется, вода выливается наружу. Переполненный фотопиксель называют насыщенным, и он неспособен распознать дальнейшее поступление фотонов - тем самым определяя уровень белого камеры. Для идеальной камеры её контраст в таком случае определялся бы числом фотонов, которое может быть накоплено каждым из фотопикселей, поделенным на минимальную измеримую интенсивность света (один фотон). Если в пикселе может сохраниться 1000 фотонов, контрастность будет 1000:1. Поскольку ячейка большего размера может накопить больше фотонов, у цифровых зеркальных камер динамический диапазон обычно больше, чем у компактных камер (в силу большего размера пикселей).

Примечание: в некоторых цифровых камерах существует дополнительная настройка низкого ISO, которая снижает шум, но также и сужает динамический диапазон. Это происходит потому, что такая настройка в действительности переэкспонирует изображения на одну ступень и впоследствии обрезает яркости - увеличивая таким способом светосигнал. Примером могут служить многие камеры Canon, которые имеют возможность снимать в ISO 50 (ниже обычного ISO 100).

В действительности потребительские камеры не могут подсчитать фотоны. Динамический диапазон ограничен наиболее тёмным тоном, для которого более невозможно различить текстуру - его называют уровнем чёрного. Уровень чёрного ограничен тем, насколько точно можно измерить сигнал в каждом фотопикселе и, следовательно, ограничен снизу уровнем шума . В результате динамический диапазон как правило увеличивается при снижении числа ISO, а также у камер с меньшей погрешностью измерения .

Примечание: даже если бы фотопиксель мог подсчитать отдельные фотоны, подсчёт тем не менее был бы ограничен фотонным шумом. Фотонный шум создаётся статистическими колебаниями и представляет теоретический минимум шума. Итоговый шум является суммой фотонного шума и погрешности считывания.

В целом, динамический диапазон цифровой камеры таким образом может быть описан как соотношение между максимальной (при насыщении пикселя) и минимальной (на уровне погрешности считывания) измеримой интенсивностью света. Наиболее распространённой единицей измерения динамического диапазона цифровых камер является f-ступень, которая описывает разницу в освещённости в степенях числа 2. Контраст 1024:1 в таком случае может быть также описан как динамический диапазон из 10 f-ступеней (поскольку 2 10 = 1024).В зависимости от применения, каждая f-ступень может быть также описана как «зона» или «eV».

Сканеры

Сканеры оцениваются по тому же соотношению насыщенности и шума, как и динамический диапазон цифровых камер, за исключением того, что они описываются в терминах плотности (D). Это удобно, поскольку концептуально аналогично тому, как пигменты создают цвет на отпечатке, как показано ниже.

Общий динамический диапазон в терминах плотности таким образом выглядит как разница между максимальной (D max) и минимальной (D min) плотностями пигмента. В отличие от степеней 2 для f-ступеней, плотность измеряется в степенях 10 (так же, как и шкала Рихтера для землетрясений). Таким образом, плотность 3.0 представляет контраст 1000:1 (поскольку 10 3.0 = 1000).

Исходный динамический
диапазон

Динамический
диапазон сканера

Вместо указания диапазона плотности производители сканеров обычно указывают только значение D max , поскольку D max - D min обычно приблизительно равно D max . Это потому, что в отличие от цифровых камер, сканер контролирует свой источник света, гарантируя минимальную засветку.

Для высокой плотности пигмента к сканерам применимы те же ограничения по шуму, что и для цифровых камер (поскольку оба они используют массив фотопикселей для измерения). Таким образом, измеримая D max тоже определяется шумом, присутствующим в процессе считывания светосигнала.

Сравнение

Динамический диапазон варьируется настолько широко, что его часто измеряют логарифмической шкалой, аналогично тому как крайне различные интенсивности землетрясений измеряются одной шкалой Рихтера. Здесь приведен максимальный измеримый (или воспроизводимый) динамический диапазон для различных устройств в любых предпочитаемых единицах (f-ступени, плотность и соотношение контраста). Наведите курсор на каждый из вариантов, чтобы их сравнить.

Выберите тип диапазона:
Печать Сканеры Цифровые камеры Мониторы

Обратите внимание на огромную разницу между воспроизводимым динамическим диапазоном печати и измеримым сканерами и цифровыми камерами. Сравнивая с реальным миром, это разница между примерно тремя f-ступенями в облачный день с практически ровным отражённым светом и 12 и более f-ступенями в солнечный день с высококонтрастным отражённым светом.

Использовать вышеуказанные цифры следует с осторожностью: в действительности динамический диапазон отпечатков и мониторов сильно зависит от условий освещения. Отпечатки при неверном освещении могут не показать свой полный динамический диапазон, тогда как мониторы требуют практически полной темноты, чтобы реализовать свой потенциал - особенно плазменные экраны. Наконец, все эти цифры являются всего лишь грубыми приближениями; реальные значения будут зависеть от наработки прибора или возраста отпечатка, поколения модели, ценового диапазона и т.д.

Учтите, что контрастность мониторов зачастую сильно завышена , поскольку для них не существует стандарта производителя. Контрастность свыше 500:1 зачастую является результатом очень тёмной чёрной точки, а не более яркой белой. В связи с этим нужно уделять внимание как контрастности, так и яркости. Высокая контрастность без сопутствующей высокой яркости может быть полностью сведена на нет даже рассеянным светом от свечи.

Человеческий глаз

Человеческий глаз может в действительности воспринимать более широкий динамический диапазон, чем это обычно возможно для камеры. Если учитывать ситуации, в которых наш зрачок расширяется и сужается, адаптируясь к изменению света , наши глаза способны видеть в диапазоне величиной почти 24 f-ступеней.

С другой стороны, для корректного сравнения с одним снимком (при постоянной диафрагме, выдержке и ISO) мы можем рассматривать только мгновенный динамический диапазон (при неизменной ширине зрачка). Для полной аналогии нужно смотреть в одну точку сцены, дать глазам адаптироваться и не смотреть при этом ни на что другое. В этом случае существует большая несогласованность, поскольку чувствительность и динамический диапазон наших глаз меняется в зависимости от яркости и контраста. Наиболее вероятным будет диапазон из 10-14 f-ступеней.

Проблема этих чисел в том, что наши глаза исключительно адаптивны. Для ситуаций исключительно неяркого звёздного света (когда наши глаза используют палочки для ночного видения) они достигают даже более широких мгновенных динамических диапазонов (см. «Цветовое восприятие человеческого глаза »).

Глубина цветности и измерение динамического диапазона

Даже если бы чья-то камера могла охватить большую часть динамического диапазона, точность, с которой измерения света преобразуются в цифры, может ограничить применимый динамический диапазон. Рабочая лошадка, которая занимается преобразованием непрерывных результатов измерений в дискретные числовые значения, называется аналогово-цифровым преобразователем (АЦП). Точность АЦП может быть описана в терминах разрядности, аналогично разрядности цифровых изображений , хотя следует помнить о том, что эти концепции неявляются взаимозаменяемыми. АЦП создаёт значения, которые хранятся в файле формата RAW .

Примечание: вышеприведенные значения отражают только точность АЦП и не должны
использоваться для интерпретации результатов для 8 и 16-битных файлов изображений.
Далее, для всех значений показан теоретический максимум, как если бы шум отсутствовал.
Наконец, эти цифры справедливы только для линейных АЦП, а разрядность
нелинейных АЦП необязательно коррелирует с динамическим диапазоном.

В качестве примера, 10 бит глубины цветности преобразуются в диапазон возможных яркостей 0-1023 (поскольку 2 10 = 1024 уровня). Предполагая, что каждое значение на выходе АЦП пропорционально актуальной яркости изображения (то есть, удвоение значения пикселя означает удвоение яркости), 10-битная разрядность может обеспечить контрастность не более 1024:1.

Большинство цифровых камер используют АЦП с разрядностью от 10 до 14 бит, так что их теоретически достижимый максимальный динамический диапазон составляет 10-14 ступеней. Однако такая высокая разрядность всего лишь помогает минимизировать постеризацию изображения , поскольку общий динамический диапазон обычно ограничен уровнем шума. Подобно тому, как большая разрядность изображения необязательно подразумевает большую глубину его цветности , наличие в цифровой камере высокоточного АЦП необязательно означает, что она в состоянии записать широкий динамический диапазон. На практике динамический диапазон цифровой камеры даже не приближается к теоретическому максимуму АЦП ; в основном 5-9 ступеней - это всё, чего можно ожидать от камеры.

Влияние типа изображения и кривая цветности

Могут ли файлы цифровых изображений в действительности записать полный динамический диапазон высококлассных приборов? В интернете наблюдается большое непонимание взаимосвязи разрядности изображения с записываемым динамическим диапазоном.

Для начала следует разобраться, говорим мы о записываемом или отображаемом динамическом диапазоне. Даже обыкновенный 8-битный файл формата JPEG может предположительно записать бесконечный динамический диапазон - предполагая, что во время преобразования из формата RAW была применена кривая цветности (см. статью о применении кривых и динамическом диапазоне), и АЦП имеет требуемую разрядность. Проблема кроется в использовании динамического диапазона; если слишком малое число бит распространить на слишком большой диапазон цвета, это может привести к постеризации изображения .

С другой стороны, отображаемый динамический диапазон зависит от коррекции гаммы или кривой цветности, подразумеваемой файлом изображения или используемой видеокартой и монитором. Используя гамму 2.2 (стандарт для персональных компьютеров), было бы теоретически возможно передать динамический диапазон из практически 18 f-ступеней (об этом расскажет глава о коррекции гаммы, когда будет написана). И даже в этом случае он мог бы пострадать от сильной постеризации. Единственным на сегодня стандартным решением для получения практически бесконечного динамического диапазона (без видимой постеризации) является использование файлов расширенного динамического диапазона (HDR) в Photoshop (или другой программе, например, с поддержкой формата OpenEXR).