Что такое двоичная система исчисления. История развития двоичной системы счисления. Преобразование дробных десятичных чисел в двоичные

Система счисления - это способ отображения чисел на бумаге. Они используются в расчетах на оборудовании и цифровой аппаратуре. Двоичная система счисления сейчас представляет собой один из наиболее востребованных инструментов в вычислительных приборах. Рассмотрим особенности работы с этой системой счисления.

История возникновения двоичной системы счисления

Ученые древнего мира предложили производить вычисления, используя лишь 2 цифры, и предположили, что за таким методом расчета будущее. Это объясняется простотой такого метода исчисления: всего 2 положения (0 и 1), 2 позиции, например, есть сигнал или нет сигнала. Немецкий математик Лейбниц полагал, что математические операции, осуществляемые над 2 цифрами, несут в себе определенный порядок.

До 40-х годов 20 века теория двоичной системы не развивалась, пока американский ученый Клод Шеннон не предложил применять ее в работе электронных схем. Оказалось, что их использование в ПЭВМ гораздо предпочтительнее, ведь человеку непросто запоминать громоздкое скопление нулей и единиц. А в компьютере достаточно создать устройство, имеющее логические 0 и 1, то есть обладающее не более 2 логическими состояниями. Это может быть намагниченный или размагниченный сердечник, закрытый или открытый трансформатор и т.д. Всего 2 положения, а не 10, как могло бы быть при использовании десятичной системы при компьютерных вычислениях.

Характеристики двоичной системы счисления

К особенностям двоичной системы счисления следует отнести:

  • Использование всего пары цифр (0 и 1). Основание такой системы равно 2.
  • Алгебраические операции, проводимые с числами из двух цифр, не представляют большой сложности.
  • Хранение и преобразование сигналов видеоаппаратурой и приборами записи осуществляется в коде, состоящем из 0 и 1.
  • Цифровые каналы связи обмениваются данными, используя их представление в виде 0 и 1.

Счет в двоичной системе

И затем для каждой цифры по порядку идет повышение разряда:

100 - четыре.

110 - шесть.

После 7 цифры записываются в виде 4 разрядов:

1000 - восемь.

1001 - девять.

1010 - десять.

1011 - одиннадцать.

1100 - двенадцать.

1101 - тринадцать.

1110 - четырнадцать.

Перевод чисел из двоичной системы в десятичную

Представление десятичных чисел в двоичной системе делает их довольно громоздкими. Рассмотрим как происходит обратный процесс: перевод числа, состоящего из 0 и 1, в удобный для нас вид. Например, нужно перевести двоичный код 10101110 в десятичный вид.

Его можно разбить по степеням, как это выполняется в десятичной системе. Так, число 1587 можно отобразить как:

1000 + 500 + 80 + 7.

Или еще одним способом:

1*10 3 + 5*10 2 + 8*10 1 + 7*10 0 .

В предыдущей записи просуммированы степени, соответствующие разряду каждой цифры за вычетом 1. За основание степени взято число10, потому что это десятичная система счисления. Этот метод можно применить к числу, представленному в двоичном виде. Только за основание степени следует брать цифру 2. Получается:

10101110 = 1*2 7 + 0*2 6 + 1*2 5 + 0*2 4 + 1*2 3 + 1*2 2 + 1*2 1 + 0*2 0 = 128 + 0 + 32 + 0 + 8 + 4 + 2 + 0 = 174.

Степени двойки выбираются по следующему принципу: необходимо посчитать разряд цифры и вычесть 1 из этого значения. Следует помнить, что разряд увеличивается справа налево. Так, самая первая единица имеет восьмой разряд, тогда ее надо умножить на 2 7 и т.д.

Таким образом, двоичная форма числа 10101110 - это 174 в десятичном представлении. Корректная запись выглядит так:

10101110 2 = 174 10 .

Бывает необходимость в обратном процессе: перевести десятичный вид записи в последовательность из 0 и 1. Это выполняется путем деления на 2 и образованием двоичного числа из остатка. Например, число 69.

Делимое Делитель Частное Остаток
69 2 34 1
34 2 17 0
17 2 8 1
8 2 4 0
4 2 2 0
2 2 1 0
1 2 0 1

Смотрим на остаток. Получаем число в двоичной форме, начиная с последней строчки: 1000101 (эти цифры расположены в столбце «Остаток», если смотреть снизу вверх). Нужно проверить полученный результат:

1000101 = 1*2 6 + 0*2 5 + 0*2 4 + 0*2 3 + 1*2 2 + 0*2 1 + 1*2 0 = 64 + 4 +1 = 69.

Математические операции с двоичными числами

Сложение.

Это основная арифметическая операция при расчетах на компьютерах. Основные принципы сложения двоичных чисел опираются на правила:

Таким образом, складывая в столбик 1101 2 и 110 2 , получаем 10011 2 или 19 10 .

Вычитание .

Эта операция идентична сложению, если представить, что одно из двоичных чисел является отрицательным. В таком случае нужно учитывать модули складываемых чисел.

Правила, используемые при вычитании:

0 - 1 = 1 (занимаем из старшего разряда).

Например, вычитаем из 1110 2 число 101 2 , получаем 1001 2 или 9 10 .

Умножение .

На бумаге умножение представляет собой совокупность операций сложения. Например, необходимо произвести умножение 10 10 на 40 10 .

Преобразуем их в совокупность 0 и 1:

10 10 =00001010 2

40 10 = 00101000 2

Оба числа в двоичной форме имеют слева и справа несколько нулей, которые не играют роли в операции умножения. Значимые части - это 101 в числе 10 и 101 в числе 40, расположенные между нулями. Их нужно перемножить, а нули просто дописать в итоговом результате:

Перемножаем левую и правую единицу второго множителя на первый множитель, затем суммируем полученный промежуточный результат. Нули складываем и переписываем в итоговый результат умножения, который в двоичной форме выглядит так: 000000110010000 2 (нижняя строчка слева направо).

Проверяя, получаем:

1 * 2 8 + 1 * 2 7 + 1 * 2 4 = 256 + 128 + 16 = 400.

Деление .

Рассмотрим наиболее простой пример деления без остатка. Надо разделить 14 10 на 2 10 . В двоичном виде это выглядит так:

14 10 = 1110 2 .

Делим 1110 2 на 10 2 в столбик:

1110 |10

Получаем число 111 2 , что равняется 7 в десятичной системе счисления. При проверке умножением доказываем точность результата:

Смотрим на нижнюю строчку слева направо, результат умножения - 1110 2 . Ответ верный.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Введение

Владея развитой компьютерной теорией, программисты иногда забывают о той роли, которую сыграли системы счисления в истории компьютеров. Ведь первые счетные приборы (абаки и арифмометры), прообразы современных компьютеров, начали создаваться задолго до возникновения алгебры логики, теории алгоритмов - и главную роль при их создании сыграли именно системы счисления. Об этом следует помнить, прогнозируя дальнейшее развитие компьютерной техники.

1. Происхождение и история развития систем счисления

На ранних ступенях развития общества люди почти не умели считать. У первобытных народов не существовало развитой системы счисления. Еще в 19 веке у многих племен Австралии и Полинезии было только два числительных: один и два; сочетания их образовывали числа: 3 - два - один, 4 - два - два, 5 - два - два - один и 6 - два - два - два. Обо всех числах, больших 6, говорили «много», не индивидуализируя их. Это был еще не счет, а лишь его зародыш.

Впоследствии способность различать друг от друга небольшие совокупности развивалась; возникли слова для обозначений понятий «четыре», «пять», «шесть», «семь». Последнее слово длительное время обозначало также неопределенно большое количество. Наши пословицы сохранили память об этой эпохе («семь раз отмерь - один раз отрежь», «у семи нянек дитя без глазу», «семь бед - один ответ» и т.д.).

В период правления династий Маурьев и Гуптов (IV - II вв. до н.э. - VIII в.н.э), индийскими учеными была создана десятичная система счисления, современное начертание цифр (позже названных в несколько измененном виде арабскими).

Одной из наиболее древних систем счисления является египетская иероглифическая нумерация, возникшая еще за 2500 - 3000 лет до н. э. Это была десятичная непозиционная система счисления, в которой для записи чисел применялся только принцип сложения (числа, выраженные рядом стоящими цифрами, складываются). Специальные знаки имелись для единицы, десяти, ста и других десятичных разрядов до.

С развитием общественно-хозяйственной жизни возникла потребность в создании систем счисления, которые позволяли бы вести счет в более обширных пределах и обозначать все большие совокупности предметов. Для этого человек пользовался окружавшими его предметами, как инструментами счета: он делал зарубки на палках и на деревьях, завязывал узлы на веревках, складывал камешки в кучки и т.п. Такой вид счета носит название унарной системы счисления, т.е. система счисления, в которой для записи числа применяется только один вид знаков. Это удобно, так как сразу визуально определяется количество знаков и сопоставляется с количеством предметов, которые эти знаки обозначают. Все мы ходили в первый класс и считали там, на счетных палочках - это отзвук той далекой эпохи. Кстати, от счета с помощью камешков ведут свое начало различные усовершенствованные инструменты, такие как, например, русские счеты, китайские счеты («сван-пан»), древнеегипетский «абак» (доска, разделенная на полосы, куда клались жетоны). Аналогичные инструменты существовали у многих народов. Более того, в латинском языке понятие «счет» выражается словом «calculatio» (отсюда наше слово «калькуляция»); а происходит оно от слова «calculus», означающего «камешек».

Особо важную роль играл природный инструмент человека - его пальцы. Этот инструмент не мог длительно хранить результат счета, но зато всегда был «под рукой» и отличался большой подвижностью. Язык первобытного человека был беден; жесты возмещали недостаток слов, и числа, для которых еще не было названий, «показывались» на пальцах.

На первых порах расширение запаса чисел происходило медленно. Сначала люди овладели счетом в пределах нескольких десятков и лишь позднее дошли до сотни. У многих народов число 40 долгое время было пределом счета и названием неопределенно большого количества. В русском языке слово «сороконожка» имеет смысл «многоножка»; выражение «сорок сороков» означало в старину число, превосходящее всякое воображение.

На следующей ступени счет достигает нового предела: десяти десятков, и создается название для числа 100. Вместе с тем слово «сто» приобретает смысл неопределенно большого числа. Такой же смысл приобретают потом последовательно числа тысяча, десять тысяч (в старину это число называлось «тьма»), миллион.

На современном этапе границы счета определены термином «бесконечность», который не обозначает, какое либо конкретное число.

2. История возникновения двоичной системы счисления

Системой счисления называется совокупность приемов и правил для наименования и обозначения чисел. Условные знаки, применяемые для обозначения чисел, называются цифрами.

Обычно все системы счисления разбивают на два класса: непозиционные и позиционные.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает означает 7 сотен, вторая -- 7 единиц, а третья -- 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения:

В непозиционных системах счисления вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

Исторически первыми системами счисления были именно непозиционные системы. Одним из основных недостатков является трудность записи больших чисел. Запись больших чисел в таких системах либо очень громоздка, либо алфавит системы чрезвычайно велик. Примером непозиционной системы счисления, достаточно широко применяющейся в настоящее время, может служить так называемая римская нумерация.

Двоичная система счисления, т.е. система с основанием, является «минимальной» системой, в которой полностью реализуется принцип позиционности в цифровой форме записи чисел. В двоичной системе счисления значение каждой цифры «по месту» при переходе от младшего разряда к старшему увеличивается вдвое.

История развития двоичной системы счисления - одна из ярких страниц в истории арифметики. Официальное «рождение» двоичной арифметики связывают с именем Г.В. Лейбница, опубликовавшего статью, в которой были рассмотрены правила выполнения всех арифметических операций над двоичными числами.

Лейбниц, однако, не рекомендовал двоичную арифметику для практических вычислений вместо десятичной системы, но подчеркивал, что "вычисление с помощью двоек, то есть 0 и 1, в вознаграждение его длиннот является для науки основным и порождает новые открытия, которые оказываются полезными впоследствии, даже в практике чисел, а особенно в геометрии: причиной чего служит то обстоятельство, что при сведении чисел к простейшим началам, каковы 0 и 1, всюду выявляется чудесный порядок".

Лейбниц считал двоичную систему простой, удобной и красивой. Он говорил, что «вычисление с помощью двоек... является для науки основным и порождает новые открытия... При сведении чисел к простейшим началам, каковы 0 и 1, везде появляется чудесный порядок».

По просьбе ученого в честь «диадической системы» - так тогда называли двоичную систему - была выбита медаль. На ней изображалась таблица с числами и простейшие действия с ними. По краю медали вилась лента с надписью: «Чтобы вывести из ничтожества все, достаточно единицы».

Потом о двоичной системе забыли. В течение почти 200 лет на эту тему не было издано ни одного труда. Вернулись к ней только в 1931 году, когда были продемонстрированы некоторые возможности практического применения двоичного счисления.

Блестящие предсказания Лейбница сбылись только через два с половиной столетия, когда выдающийся американский ученый, физик и математик Джон фон Нейман предложил использовать именно двоичную систему счисления в качестве универсального способа кодирования информации в электронных компьютерах ("Принципы Джона фон Неймана").

3. Запись числа в двоичной системе

Чем меньше знаков - цифр в одном разряде для записи в двоичной системе, тем больше надо разрядов, чтобы представить данное число. Возьмем, например число 8. В двоичной системе для его представления понадобятся четыре разряда: 1000.

Теперь возьмем другую запись в двоичной системе - 1111. Самая правая, последняя цифра так и будет единицей. Но уже следующая высшего разряда - больше ее только в два раза и означает 2, третья опять в два раза больше - 4, четвертая соответственно - 8.

Попробуем записать какое-нибудь число, допустим 1017, в двоичной системе. Для этого, как и в десятичной системе, раскладываем его на разряды, но разряды здесь выглядят по-иному. Начнем с низшего, с 7. Поскольку в двоичной системе каждый разряд в два раза больше последующего, число 7 запишется суммой трех двоичных разрядов: 7=4+2+ 1 (1 в 2 раза меньше 2; 2 в 2 раза меньше 4). В числе 7 одна четверка, одна двойка, одна единица: 7=4+2+ 1. Эту запись можно сделать по-другому: 1*22+ 1*21 + 1. Следовательно, в каждом из этих разрядов ставим по 1-111.

Затем идет число 10. Оно состоит из одной восьмерки и одной двойки: 10 = 8+2 = 1*23 + 0*22 + 1*21 + 0*20. Заметили, здесь нет разрядов единицы и четверок, поэтому вместо них мы ставим нули и записываем число так: 1010.

Так же можно разложить и все следующие разряды. Тогда все число 1017 запишется как 512 + 256 + 128 + 64 + 32 + 16 + 8 + 1= 1*29 + 1*28 + 1*27 + 1*26 + 1*25 + 1*24 + 1*23 + 0*22 + 0*21 + 1*20 и. Записываем по разрядам и получаем 1 111 111 001.

Основы двоичной системы, столь непривычной из-за традиции оперировать всегда и везде системой десятичной, мы знаем. Двоичной системой пользуются только вычислительные машины. Машина пересчитывает нули и единицы с очень большой скоростью.

Достоинства двоичной системы счисления заключаются в простоте реализации процессов хранения, передачи и обработки информации на компьютере:

1. Для ее реализации нужны элементы с двумя возможными состояниями, а не с десятью.

2. Представление информации посредством только двух состояний надежно и помехоустойчиво.

3. Возможность применения алгебры логики для выполнения логических преобразований.

4. Двоичная арифметика проще десятичной.

Недостатки двоичной системы счисления.

Итак, код числа, записанного в двоичной системе счисления, представляет собой последовательность из 0 и 1. большие числа занимают достаточно большое число разрядов.

Быстрый рост числа разрядов - самый существенный недостаток двоичной системы счисления.

Заключение

двоичный кодирование компьютер

Люди предпочитают десятичную систему, вероятно, потому, что с древних времен считали по пальцам, но применимо к компьютерной технике и ЭВМ двоичная система счисления имеет ряд преимуществ перед другими системами, т.к. для ее реализации нужны технические устройства лишь с двумя устойчивыми состояниями (есть ток -- нет тока, намагничен -- не намагничен и т.п.), а не, например, с десятью, -- как в десятичной; представление информации посредством только двух состояний надежно и помехоустойчиво; возможность применения аппарата булевой алгебры для выполнения логических преобразований информации; двоичная арифметика проще десятичной. Однако, недостаток двоичной системы -- быстрый рост числа разрядов, необходимых для записи чисел.

На сегодняшний день именно двоичная система счисления используется для кодирования и шифрования информации. Из всех существующих систем счисления двоичная система счисления наиболее удобна и применима в компьютерной технике и ЭВМ.

Список использованной литературы

1. Бобынин В.В. «Лекции по истории математики» («Физико-математические Науки», т. IХ и Х, лекции 2--6);

2. Бобынин В.В. «Исследования по истории математики» (вып. II, М., 1896).

3. Выгодский М.Я. Справочник по элементарной математике, М.: Государственное издательство технико-теоретической литературы, 1956.

4. Ролич Ч.Н. - От 2 до 16, Минск, «Высшая школа», 1981 г.

5. Фомин С.В. Системы счисления, М.: Наука, 1987.

Размещено на Allbest.ru

...

Подобные документы

    Факты появления двоичной системы счисления - позиционной системы счисления с основанием 2. Достоинства системы: простота вычислений и организации чисел, возможность сведения всех арифметических действий к одному - сложению. Применение двоичной системы.

    презентация , добавлен 10.12.2014

    Примеры правила перевода чисел с одной системы в другую, правила и особенности выполнения арифметических операций в двоичной системе счисления. Перевод числа с десятичной системы в двоичную систему счисления. Умножение целых чисел в двоичной системе.

    контрольная работа , добавлен 13.02.2009

    Определение информации, ее виды и свойства. Назначение основных блоков компьютера: процессор, память, системная магистраль, внешнее устройство. Архитектура фон Неймана. Характерные черты информации. Принцип использования двоичной системы счисления.

    контрольная работа , добавлен 21.02.2010

    Целые числа в позиционных системах счисления. Недостатки двоичной системы. Разработка алгоритмов, структур данных. Программная реализация алгоритмов перевода в различные системы счисления на языке программирования С. Тестирование программного обеспечения.

    курсовая работа , добавлен 03.01.2015

    Характеристика методов представления заданных чисел в двоичной, шестнадцатеричной, восьмеричной системе счисления. Представление указанного числа в четырехбайтовом IEEE формате. Разработка алгоритма обработки одномерных и двумерных числовых массивов.

    контрольная работа , добавлен 05.06.2010

    Понятие и виды систем счисления, принципы двоичной системы. Формы представления чисел в ЭВМ, виды кодирования информации. Оценка и выбор пакетов прикладных программ: преимущества операционной системы Windows, справочной системы "КонсультантПлюс".

    реферат , добавлен 21.06.2010

    Порождение целых чисел в позиционных системах счисления. Почему мы пользуемся десятичной системой, а компьютеры - двоичной (восьмеричной и шестнадцатеричной)? Перевод чисел из одной системы в другую. Математические действия в различных системах счисления.

    конспект произведения , добавлен 31.05.2009

    Логические элементы как устройства, предназначенные для обработки информации в цифровой форме. Определение основных отличительных особенностей и преимуществ двоичной и троичной систем счисления по сравнению с десятичной системой счисления, их типы.

    реферат , добавлен 20.11.2011

    лабораторная работа , добавлен 31.05.2009

    Числа с фиксированной точкой характеризуются длиной слова в битах, положением двоичной точки, бывают беззнаковыми или знаковыми. Позиция двоичной точки определяет число разрядов в целой и дробной частях машинного слова. Представление отрицательного числа.

Энциклопедичный YouTube

    1 / 5

    ✪ Зачем нужны системы счисления: двоичная и другие

    ✪ Как запоминает и считает компьютер. Системы счисления и кодирования данных

    ✪ Системы счисления: Сложение, вычитание и умножение двоичных чисел. Центр онлайн-обучения «Фоксфорд»

    ✪ Основы систем счисления

    ✪ Системы счисления. Двоичная система счисления - 9 класс

    Субтитры

Двоичная запись чисел

В двоичной системе счисления числа записываются с помощью двух символов (0 и 1 ). Чтобы не путать, в какой системе счисления записано число, его снабжают указателем справа внизу. Например, число в десятичной системе 5 10 , в двоичной 101 2 . Иногда двоичное число обозначают префиксом 0b или символом & (амперсанд) , например 0b101 или соответственно &101 .

В двоичной системе счисления (как и в других системах счисления, кроме десятичной) знаки читаются по одному. Например, число 101 2 произносится «один ноль один».

Натуральные числа

Натуральное число, записываемое в двоичной системе счисления как (a n − 1 a n − 2 … a 1 a 0) 2 {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}} , имеет значение:

(a n − 1 a n − 2 … a 1 a 0) 2 = ∑ k = 0 n − 1 a k 2 k , {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}=\sum _{k=0}^{n-1}a_{k}2^{k},}

Отрицательные числа

Отрицательные двоичные числа обозначаются так же как и десятичные: знаком «−» перед числом. А именно, отрицательное целое число, записываемое в двоичной системе счисления (− a n − 1 a n − 2 … a 1 a 0) 2 {\displaystyle (-a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}} , имеет величину:

(− a n − 1 a n − 2 … a 1 a 0) 2 = − ∑ k = 0 n − 1 a k 2 k . {\displaystyle (-a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}=-\sum _{k=0}^{n-1}a_{k}2^{k}.}

дополнительном коде .

Дробные числа

Дробное число, записываемое в двоичной системе счисления как (a n − 1 a n − 2 … a 1 a 0 , a − 1 a − 2 … a − (m − 1) a − m) 2 {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0},a_{-1}a_{-2}\dots a_{-(m-1)}a_{-m})_{2}} , имеет величину:

(a n − 1 a n − 2 … a 1 a 0 , a − 1 a − 2 … a − (m − 1) a − m) 2 = ∑ k = − m n − 1 a k 2 k , {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0},a_{-1}a_{-2}\dots a_{-(m-1)}a_{-m})_{2}=\sum _{k=-m}^{n-1}a_{k}2^{k},}

Сложение, вычитание и умножение двоичных чисел

Таблица сложения

Пример сложения «столбиком» (14 10 + 5 10 = 19 10 или 1110 2 + 101 2 = 10011 2):

Пример умножения «столбиком» (14 10 * 5 10 = 70 10 или 1110 2 * 101 2 = 1000110 2):

× 1 1 1 0
1 0 1
+ 1 1 1 0
1 1 1 0
1 0 0 0 1 1 0

Преобразование чисел

Для преобразования из двоичной системы в десятичную используют следующую таблицу степеней основания 2:

1024 512 256 128 64 32 16 8 4 2 1

Начиная с цифры 1 все цифры умножаются на два. Точка, которая стоит после 1, называется двоичной точкой.

Преобразование двоичных чисел в десятичные

Допустим, дано двоичное число 110001 2 . Для перевода в десятичное запишите его как сумму по разрядам следующим образом:

1 * 2 5 + 1 * 2 4 + 0 * 2 3 + 0 * 2 2 + 0 * 2 1 + 1 * 2 0 = 49

То же самое чуть иначе:

1 * 32 + 1 * 16 + 0 * 8 + 0 * 4 + 0 * 2 + 1 * 1 = 49

Можно записать это в виде таблицы следующим образом:

512 256 128 64 32 16 8 4 2 1
1 1 0 0 0 1
+32 +16 +0 +0 +0 +1

Двигайтесь справа налево. Под каждой двоичной единицей напишите её эквивалент в строчке ниже. Сложите получившиеся десятичные числа. Таким образом, двоичное число 110001 2 равнозначно десятичному 49 10 .

Преобразование дробных двоичных чисел в десятичные

Нужно перевести число 1011010,101 2 в десятичную систему. Запишем это число следующим образом:

1 * 2 6 + 0 * 2 5 + 1 * 2 4 + 1 * 2 3 + 0 * 2 2 + 1 * 2 1 + 0 * 2 0 + 1 * 2 -1 + 0 * 2 -2 + 1 * 2 -3 = 90,625

То же самое чуть иначе:

1 * 64 + 0 * 32 + 1 * 16 + 1 * 8 + 0 * 4 + 1 * 2 + 0 * 1 + 1 * 0,5 + 0 * 0,25 + 1 * 0,125 = 90,625

Или по таблице:

64 32 16 8 4 2 1 0.5 0.25 0.125
1 0 1 1 0 1 0 , 1 0 1
+64 +0 +16 +8 +0 +2 +0 +0.5 +0 +0.125

Преобразование методом Горнера

Для того, чтобы преобразовывать числа из двоичной в десятичную систему данным методом, надо суммировать цифры слева направо, умножая ранее полученный результат на основу системы (в данном случае 2). Методом Горнера обычно переводят из двоичной в десятичную систему. Обратная операция затруднительна, т.к. требует навыков сложения и умножения в двоичной системе счисления.

Например, двоичное число 1011011 2 переводится в десятичную систему так:

0*2 + 1 = 1
1*2 + 0 = 2
2*2 + 1 = 5
5*2 + 1 = 11
11*2 + 0 = 22
22*2 + 1 = 45
45*2 + 1 = 91

То есть в десятичной системе это число будет записано как 91.

Перевод дробной части чисел методом Горнера

Цифры берутся из числа справа налево и делятся на основу системы счисления (2).

Например 0,1101 2

(0 + 1 )/2 = 0,5
(0,5 + 0 )/2 = 0,25
(0,25 + 1 )/2 = 0,625
(0,625 + 1 )/2 = 0,8125

Ответ: 0,1101 2 = 0,8125 10

Преобразование десятичных чисел в двоичные

Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой:

19 /2 = 9 с остатком 1
9 /2 = 4 c остатком 1
4 /2 = 2 без остатка 0
2 /2 = 1 без остатка 0
1 /2 = 0 с остатком 1

Итак, мы делим каждое частное на 2 и записываем остаток в конец двоичной записи. Продолжаем деление до тех пор, пока в частном не будет 0. Результат записываем справа налево. То есть нижняя цифра (1) будет самой левой и т.д. В результате получаем число 19 в двоичной записи: 10011 .

Преобразование дробных десятичных чисел в двоичные

Если в исходном числе есть целая часть, то она преобразуется отдельно от дробной. Перевод дробного числа из десятичной системы счисления в двоичную осуществляется по следующему алгоритму:

  • Дробь умножается на основание двоичной системы счисления (2);
  • В полученном произведении выделяется целая часть, которая принимается в качестве старшего разряда числа в двоичной системе счисления;
  • Алгоритм завершается, если дробная часть полученного произведения равна нулю или если достигнута требуемая точность вычислений. В противном случае вычисления продолжаются над дробной частью произведения.

Пример: Требуется перевести дробное десятичное число 206,116 в дробное двоичное число.

Перевод целой части дает 206 10 =11001110 2 по ранее описанным алгоритмам. Дробную часть 0,116 умножаем на основание 2, занося целые части произведения в разряды после запятой искомого дробного двоичного числа:

0,116 2 = 0 ,232
0,232 2 = 0 ,464
0,464 2 = 0 ,928
0,928 2 = 1 ,856
0,856 2 = 1 ,712
0,712 2 = 1 ,424
0,424 2 = 0 ,848
0,848 2 = 1 ,696
0,696 2 = 1 ,392
0,392 2 = 0 ,784
и т. д.

Таким образом 0,116 10 ≈ 0,0001110110 2

Получим: 206,116 10 ≈ 11001110,0001110110 2

Применения

В цифровых устройствах

Двоичная система используется в цифровых устройствах , поскольку является наиболее простой и соответствует требованиям:

  • Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток (ток больше пороговой величины) - нет тока (ток меньше пороговой величины), индукция магнитного поля больше пороговой величины или нет (индукция магнитного поля меньше пороговой величины) и т. д.
  • Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину напряжения, тока или индукции магнитного поля, потребуется ввести два пороговых значения и два компаратора , что не будет способствовать помехоустойчивости и надёжности хранения информации. [ ]
  • Двоичная арифметика является довольно простой. Простыми являются таблицы сложения и умножения - основных действий над числами.

В цифровой электронике одному двоичному разряду в двоичной системе счисления соответствует (очевидно) один двоичный разряд двоичного регистра , то есть двоичный триггер с двумя состояниями (0,1).

В вычислительной технике широко используется запись отрицательных двоичных чисел в дополнительном коде . Например, число −5 10 может быть записано как −101 2 но в 32-битном компьютере будет храниться как 2 .

В английской системе мер

При указании линейных размеров в дюймах по традиции используют двоичные дроби, а не десятичные, например: 5¾″, 7 15 / 16 ″, 3 11 / 32 ″ и т. д.

Обобщения

Двоичная система счисления является комбинацией двоичной системы кодирования и показательной весовой функции с основанием равным 2. Следует отметить, что число может быть записано в двоичном коде , а система счисления при этом может быть не двоичной, а с другим основанием. Пример: двоично-десятичное кодирование , в котором десятичные цифры записываются в двоичном виде, а система счисления - десятичная.

История

  • Полный набор из 8 триграмм и 64 гексаграмм , аналог 3-битных и 6-битных цифр, был известен в древнем Китае в классических текстах книги Перемен . Порядок гексаграмм в книге Перемен , расположенных в соответствии со значениями соответствующих двоичных цифр (от 0 до 63), и метод их получения был разработан китайским учёным и философом Шао Юн в XI веке . Однако нет доказательств, свидетельствующих о том, что Шао Юн понимал правила двоичной арифметики, располагая двухсимвольные кортежи в лексикографическом порядке .
  • Наборы, представляющие собой комбинации двоичных цифр, использовались африканцами в традиционных гаданиях (таких как Ифа) наряду со средневековой геомантией .
  • В 1854 году английский математик Джордж Буль опубликовал знаковую работу, описывающую алгебраические системы применительно к логике , которая в настоящее время известна как Булева алгебра или алгебра логики . Его логическому исчислению было суждено сыграть важную роль в разработке современных цифровых электронных схем.
  • В 1937 году Клод Шеннон представил к защите кандидатскую диссертацию Символический анализ релейных и переключательных схем в , в которой булева алгебра и двоичная арифметика были использованы применительно к электронным реле и переключателям. На диссертации Шеннона по существу основана вся современная цифровая техника .
  • В ноябре 1937 года Джордж Штибиц , впоследствии работавший в Bell Labs , создал на базе реле компьютер «Model K» (от англ. «K itchen», кухня, где производилась сборка), который выполнял двоичное сложение. В конце 1938 года Bell Labs развернула исследовательскую программу во главе со Штибицом. Созданный под его руководством компьютер, завершённый 8 января 1940 года, умел выполнять операции с комплексными числами . Во время демонстрации на конференции American Mathematical Society в Дартмутском колледже 11 сентября 1940 года Штибиц продемонстрировал возможность посылки команд удалённому калькулятору комплексных чисел по телефонной линии с использованием телетайпа . Это была первая попытка использования удалённой вычислительной машины посредством телефонной линии. Среди участников конференции, бывших свидетелями демонстрации, были
  • Двоичная система счисления
  • Перевод чисел из одной системы счисления в другую
  • Кодирование информации на компьютере
  • Вопросы и упражнения
  • Двоичная система счисления

    Вопреки распространённому заблуждению, двоичная система счисления была придумана не инженерами-конструкторами ЭВМ, а математиками и философами задолго до появления компьютеров, ещё в 17 веке. Великий немецкий учёный Лейбниц считал:
    «Вычисление с помощью двоек... является для науки основным и порождает новые открытия... При сведении чисел к простейшим началам, каковы 0 и 1, везде появляется чудесный порядок».
    Впервые двоичная система появилась в 1605 году в работах Томаса Хэрриота (он изобрёл знаки > и ). Позже двоичная система была забыта, и только в 1936-1938 гг. американский инженер и математик Клод Шеннон нашёл замечательные применения двоичной системы при конструировании электронных схем.
    Двоичная система удобна для компьютера, но неудобна для человека - числа получаются очень длинными и их трудно записывать и запоминать. Она используется, как правило, для «внутренних нужд» компьютера. Двоичная система счисления позволяет достаточно просто организовать числа, и для того, чтобы представить число в ЭВМ, достаточно иметь устройство, которое обладает только двумя устойчивыми состояниями, одно из которых соответствует логической «1», а другое - «0». Таких элементов достаточно много: намагниченный или не намагниченный сердечник, открытый или закрытый транзистор и др. Для десятичной системы счисления понадобилось бы, к примеру, устройство с 10 устойчивыми состояниями. Это значительно усложнило бы схему ЭВМ.
    Другим важным достоинством двоичной системы является простота вычислений. Рассмотрим, как выполняются арифметические действия в двоичной системе. Для этого проведём анализ таблиц сложения и умножения в двоичной системе.

    Примеры сложения двоичных чисел:


    Примеры умножения двоичных чисел:


    Следует обратить внимание на аналогию в правилах выполнения арифметических действий в двоичной и десятичной системах счисления: например, если при сложении двух двоичных чисел сумма цифр окажется больше единицы, то возникает перенос в старший разряд.
    Вычитание двоичных чисел осуществляется следующим образом: Вычитаемое число преобразуется в дополнительный код . Например, если надо вычесть из числа 10110 число 01000, то вычитаемое 01000 преобразуется в дополнительный код так: в числе вместо 0 пишется 1, а вместо 1 пишется 0, следовательно, получим из вычитаемого число 10111. Затем преобразованное число складывается с уменьшаемым:

    И вычитаемое, и уменьшаемое состоят из 5 разрядов, а результат суммы - число 6-разрядное. Старший разряд суммы отнимается от числа и складывается с результатом:




    Такой приём часто используется в практике вычислений. Например, в десятичной системе числа можно вычесть так. Допустим требуется найти разность 842-623. Представим число 623 в дополнительный вид, отняв его от 1000. Получим число 377. Затем найдём сумму: 842+377=1219. Отбросим перенос в старший разряд и получим число 219. Мы нашли решение этого примера.

    Деление двоичных чисел выполняется аналогично делению десятичных чисел. Вычитание и умножение в процессе деления необходимо выполнять рассмотренными ранее способами.

    Важнейшее преимущество двоичной арифметики заключается в том, что она позволяет все арифметические действия свести к одному - сложению, а это значительно упрощает устройство процессора ЭВМ. Отметим недостаток, характерный для двоичной системы счисления - значительный рост числа разрядов при увеличении числа. Но все достоинства этой системы делают такой недостаток не столь существенным.

    Нега-позиционная система счисления Симметричная система счисления Смешанные системы счисления Фибоначчиева система счисления Непозиционные системы счисления Единичная (унарная) система счисления Список систем счисления

    Двоичная система счисления - позиционная система счисления с основанием 2.

    Двоичные цифры

    В этой системе счисления числа записываются с помощью двух символов (0 и 1).

    История

    • Полный набор из 8 триграмм и 64 гексаграмм , аналог 3-битных и 6-битных цифр, был известен в древнем Китае в классических текстах книги Перемен . Порядок гексаграмм в книге Перемен , расположенных в соответствии со значениями соответствующих двоичных цифр (от 0 до 63), и метод их получения был разработан китайским учёным и философом Шао Юн в XI веке . Однако нет доказательств, свидетельствующих о том, что Шао Юн понимал правила двоичной арифметики, располагая двухсимвольные кортежи в лексикографическом порядке .
    • Наборы, представляющие собой комбинации двоичных цифр, использовались африканцами в традиционных гаданиях (таких как Ифа) наряду со средневековой геомантией .
    • В 1854 году английский математик Джордж Буль опубликовал знаковую работу, описывающую алгебраические системы применительно к логике , которая в настоящее время известна как Булева алгебра или алгебра логики . Его логическому исчислению было суждено сыграть важную роль в разработке современных цифровых электронных схем.
    • В 1937 году Клод Шеннон представил к защите кандидатскую диссертацию Символический анализ релейных и переключательных схем в MIT , в которой булева алгебра и двоичная арифметика были использованы применительно к электронным реле и переключателям. На диссертации Шеннона по существу основана вся современная цифровая техника.
    • В ноябре 1937 года Джордж Штибиц , впоследствии работавший в Bell Labs , создал на базе реле компьютер «Model K» (от англ. «K itchen», кухня, где производилась сборка), который выполнял двоичное сложение. В конце 1938 года Bell Labs развернула исследовательскую программу во главе со Штибицом. Созданный под его руководством компьютер, завершённый 8 января 1940 года, умел выполнять операции с комплексными числами . Во время демонстрации на конференции American Mathematical Society в Дартмутском колледже 11 сентября 1940 года Штибиц продемонстрировал возможность посылки команд удалённому калькулятору комплексных чисел по телефонной линии с использованием телетайпа . Это была первая попытка использования удалённой вычислительной машины посредством телефонной линии. Среди участников конференции, бывших свидетелями демонстрации, были Джон фон Нейман , Джон Мокли и Норберт Винер , впоследствии писавшие об этом в своих мемуарах.

    Запись двоичных чисел

    Двоичная система счисления является комбинацией двоичной системы кодирования и показательной весовой функции с основанием равным 2. Положительные целые числа (без знака) записываются в виде:

    Количество записываемых кодов (чисел) зависит от основания системы кодирования - c , определяется в комбинаторике и равно числу размещений с повторениями :

    Количество записываемых кодов (чисел) от основания показательной функции - b не зависит.
    Основание показательной функции - b определяет диапазон представляемых числами x 2,b величин и разреженность представляемых чисел на числовой оси.

    Целые числа являются частными суммами степенного ряда :

    в котором коэффициенты a n берутся из множества R=a{0,1} , X=2 , n=k , а верхний предел в частных суммах ограничен с до - n-1 .

    Целые числа со знаком записываются в виде:

    Дробные числа записываются в виде:

    Следует отметить, что число может быть записано в двоичном коде , а система счисления при этом может быть не двоичной, а с другим основанием. Пример: двоично-десятичное кодирование, в котором десятичные цифры записываются в двоичном виде, а система счисления - десятичная.

    Сложение, вычитание и умножение двоичных чисел

    Таблица сложения

    Таблица вычитания

    Пример умножения «столбиком» (14 × 5 = 70):

    Начиная с цифры 1 все цифры умножаются на два. Точка, которая стоит после 1, называется двоичной точкой.

    Преобразование двоичных чисел в десятичные

    Допустим, вам дано двоичное число 110001. Для перевода в десятичное просто запишите его справа налево как сумму по разрядам следующим образом:

    .

    Можно записать это в виде таблицы следующим образом:

    512 256 128 64 32 16 8 4 2 1
    1 1 0 0 0 1
    +32 +16 +1

    Точно так же, начиная с двоичной точки, двигайтесь справа налево. Под каждой двоичной единицей напишите её эквивалент в строчке ниже. Сложите получившиеся десятичные числа.
    Таким образом, двоичное число 110001 равнозначно десятичному 49.

    Преобразование методом Горнера

    Для того, чтобы преобразовывать числа из двоичной в десятичную систему данным методом, надо суммировать цифры слева направо, умножая ранее полученный результат на основу системы (в данном случае 2). Например, двоичное число 1011011 переводится в десятичную систему так: 0*2+1 =1 >> 1*2+0 =2 >> 2*2+1 =5 >> 5*2+1 =11 >> 11*2+0 =22 >> 22*2+1 =45 >> 45*2+1 =91 То есть в десятичной системе это число будет записано как 91. Или число 101111 переводится в десятичную систему так: 0*2+1 =1 >> 1*2+0 =2 >> 2*2+1 =5 >> 5*2+1 =11 >> 11*2+1 =23 >> 23*2+1 =47 То есть в десятичной системе это число будет записано как 47. Перевод дробных чисел методом Горнера 1) 0,1101 2 =0,X 10 (рассматриваем цифры в обратном порядке)
    1:2=0,5
    0,5+0=0,5
    0,5:2=0,25
    0,25+1=1,25
    1,25:2=0,625
    0,625+1=1,625
    1,625:2=0,8125
    Ответ: 0,1101 2 = 0,8125 10
    2) 0,356 8 =0,X 10 (рассматриваем цифры в обратном порядке)
    6:8=0,75
    0,75+5=5,75
    5,75:8=0,71875
    0,71875+3=3,71875
    3,71875:8=0,46484375
    Ответ: 0,356 8 =0,46484375 10
    3) 0,A6E 16 =0,X 10 (рассматриваем цифры в обратном порядке)
    14:16=0,875
    0,875+6=6,875
    6,875:16=0,4296875
    0,4296875+10=10,4296875
    10,4296875:16=0,65185546875
    Ответ: 0,A6E 16 =0,65185546875 10

    Преобразование десятичных чисел в двоичные

    Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой:

    19 /2 = 9 с остатком 1 9 /2 = 4 c остатком 1 4 /2 = 2 без остатка 0 2 /2 = 1 без остатка 0 1 /2 = 0 с остатком 1

    Итак, мы делим каждое частное на 2 и записываем остаток в конец двоичной записи. Продолжаем деление до тех пор, пока в частном не будет 0. Результат записываем справа налево. То есть нижнее число будет самым левым и.т.д. В результате получаем число 19 в двоичной записи: 10011.

    Преобразование дробных двоичных чисел в десятичные

    Нужно перевести число 1011010,101 в десятичную систему. Запишем это число следующим образом:

    Или по таблице:

    64 32 16 8 4 2 1 0.5 0.25 0.125
    1 0 1 1 0 1 0. .1 0 1
    +64 +16 +8 +2 +0.5 +0.125

    Преобразование дробных десятичных чисел в двоичные

    Перевод дробного числа из десятичной системы счисления в двоичную осуществляется по следующему алгоритму:

    • Вначале переводится целая часть десятичной дроби в двоичную систему счисления;
    • Затем дробная часть десятичной дроби умножается на основание двоичной системы счисления;
    • В полученном произведении выделяется целая часть, которая принимается в качестве значения первого после запятой разряда числа в двоичной системе счисления;
    • Алгоритм завершается, если дробная часть полученного произведения равна нулю или если достигнута требуемая точность вычислений. В противном случае вычисления продолжаются с предыдущего шага.

    Пример: Требуется перевести дробное десятичное число 206,116 в дробное двоичное число.

    Перевод целой части дает 206 10 =11001110 2 по ранее описанным алгоритмам; дробную часть умножаем на основание 2, занося целые части произведения в разряды после запятой искомого дробного двоичного числа:
    0,116 2 = 0,232
    0,232 2 = 0,464
    0,464 2 = 0,928
    0,928 2 = 1,856
    0,856 2 = 1,712
    0,712 2 = 1,424
    0,424 2 = 0,848
    0,848 2 = 1,696
    0,696 2 = 1,392
    0,392 2 = 0,784
    и т. д.
    Получим: 206,116 10 =11001110,0001110110 2

    Применения

    В цифровых устройствах

    Двоичная система используется в цифровых устройствах , поскольку является наиболее простой и соответствует требованиям:

    В цифровой электронике одному двоичному разряду в двоичной системе счисления соответствует (очевидно) один двоичный разряд двоичного регистра , то есть двоичный триггер с двумя состояниями (0,1).

    В английской системе мер

    При указании линейных размеров в дюймах по традиции используют двоичные дроби, а не десятичные, например: 5¾″, 7 15 / 16 ″, 3 11 / 32 ″ и т. д.

    • На фронтоне здания (бывшего Вычислительного Центра СО АН СССР) в Новосибирском Академгородке присутствует двоичное число 1000110 (70 10), что соответствует дате постройки здания ( год).

    См. также

    • Двоичное кодирование

    Примеры чисел-степеней двойки

    Степень Значение
    0
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13 8192
    14 16384
    15 32768
    16
    17 131072
    18 262144
    19 524288
    20 1048576
    21 2097152
    22 4194304
    23 8388608
    24
    25 33554432
    26 67108864
    27 134217728
    28 268435456
    29 536870912
    30 1073741824
    31 2147483648
    32 4294967296
    33 8589934592
    34 17179869184
    35 34359738368
    36 68719476736
    37 137438953472
    38 274877906944
    39 549755813888
    40 1099511627776
    41 2199023255552
    42 4398046511104
    43 8796093022208
    44 17592186044416
    45 35184372088832
    46 70368744177664
    47 140737488355328
    48 281474976710656
    49 562949953421312
    50 1125899906842624
    51 2251799813685248

    Примечания

    1. Sanchez, Julio & Canton, Maria P. (2007), «Microcontroller programming: the microchip PIC» , Boca Raton, Florida: CRC Press, с. 37, ISBN 0-8493-7189-9
    2. W. S. Anglin and J. Lambek, The Heritage of Thales , Springer, 1995, ISBN 0-387-94544-X
    3. Ordish George, Hyams, Edward. The last of the Incas: the rise and fall of an American empire. - New York: Barnes & Noble, 1996. - С. 80. - ISBN 0-88029-595-3
    4. Experts "decipher" Inca strings . Архивировано из первоисточника 18 августа 2011.
    5. Carlos Radicati di Primeglio, Gary Urton Estudios sobre los quipus . - P. 49.
    6. Dale Buckmaster (1974). «The Incan Quipu and the Jacobsen Hypothesis ». Journal of Accounting Research 12 (1): 178-181. Проверено 2009-12-24.
    7. Bacon, Francis , «The Advancement of Learning» , vol. 6, London, сс. Chapter 1,
    8. http://www.leibniz-translations.com/binary.htm Leibniz Translation.com EXPLANATION OF BINARY ARITHMETIC
    9. Aiton, Eric J. (1985), «Leibniz: A Biography» , Taylor & Francis, сс. 245–8, ISBN 0-85274-470-6