Вывод постоянной больцмана. Универсальная газовая постоянная — универсальная, фундаментальная физическая константа R, равная произведению постоянной Больцмана k на постоянную Авогадро

Больцман Людвиг (1844-1906) - великий австрийский физик, один из основоположников молекулярно-кинетической теории. В трудах Больцмана молекулярно-кинетическая теория впервые предстала как логически стройная, последовательная физическая теория. Больцман дал статистическое истолкование второго закона термодинамики. Им много сделано для развития и популяризации теории электромагнитного поля Максвелла. Борец по натуре, Больцман страстно отстаивал необходимость молекулярного истолкования тепловых явлений и принял на себя основную тяжесть борьбы с учеными, отрицавшими существование молекул.

В уравнение (4.5.3) входит отношение универсальной газовой постоянной R к постоянной Авогадро N A . Это отношение одинаково для всех веществ. Оно называется постоянной Больцмана, в честь Л. Больцмана, одного из основателей молекулярно-кинетической теории.

Постоянная Больцмана равна:

Уравнение (4.5.3) с учетом постоянной Больцмана записывается так:

Физический смысл постоянной Больцмана

Исторически температура была впервые введена как термодинамическая величина, и для нее была установлена единица измерения - градус (см. § 3.2). После установления связи температуры со средней кинетической энергией молекул стало очевидным, что температуру можно определять как среднюю кинетическую энергию молекул и выражать ее в джоулях или эргах, т. е. вместо величины Т ввести величину Т* так, чтобы

Определенная таким образом температура связана с температурой, выражаемой в градусах, следующим образом:

Поэтому постоянную Больцмана можно рассматривать как величину, связывающую температуру, выражаемую в энергетических единицах, с температурой, выраженной в градусах.

Зависимость давления газа от концентрации его молекул и температуры

Выразив Е из соотношения (4.5.5) и подставив в формулу (4.4.10), получим выражение, показывающее зависимость давления газа от концентрации молекул и температуры:

Из формулы (4.5.6) вытекает, что при одинаковых давлениях и температурах концентрация молекул у всех газов одна и та же.

Отсюда следует закон Авогадро: в равных объемах газов при одинаковых температурах и давлениях содержится одинаковое число молекул.

Средняя кинетическая энергия поступательного движения молекул прямо пропорциональна абсолютной температуре. Коэффициент пропорциональности - постоянную Больцмана k = 10 -23 Дж/К - надо запомнить.

§ 4.6. Распределение максвелла

В большом числе случаев знание одних средних значений физических величин недостаточно. Например, знание среднего роста людей не позволяет планировать выпуск одежды различных размеров. Надо знать приблизительное число людей, рост которых лежит в определенном интервале. Точно так же важно знать числа молекул, имеющих скорости, отличные от среднего значения. Максвелл первым нашел, как эти числа можно определять.

Вероятность случайного события

В §4.1 мы уже упоминали, что для описания поведения большой совокупности молекул Дж. Максвелл ввел понятие вероятности.

Как неоднократно подчеркивалось, в принципе невозможно проследить за изменением скорости (или импульса) одной молекулы на протяжении большого интервала времени. Нельзя также точно определить скорости всех молекул газа в данный момент времени. Из макроскопических условий, в которых находится газ (определенный объем и температура), не вытекают с необходимостью определенные значения скоростей молекул. Скорость молекулы можно рассматривать как случайную величину, которая в данных макроскопических условиях может принимать различные значения, подобно тому как при бросании игральной кости может выпасть любое число очков от 1 до 6 (число граней кости равно шести). Предсказать, какое число очков выпадет при данном бросании кости, нельзя. Но вероятность того, что выпадет, скажем, пять очков, поддается определению.

Что же такое вероятность наступления случайного события? Пусть произведено очень большое число N испытаний (N - число бросаний кости). При этом в N " случаях имел место благоприятный исход испытаний (т. е. выпадение пятерки). Тогда вероятность данного события равна отношению числа случаев с благоприятным исходом к полному числу испытаний при условии, что это число сколько угодно велико:

Для симметричной кости вероятность любого выбранного числа очков от 1 до 6 равна .

Мы видим, что на фоне множества случайных событий обнаруживается определенная количественная закономерность, появляется число. Это число - вероятность - позволяет вычислять средние значения. Так, если произвести 300 бросаний кости, то среднее число выпаданий пятерки, как это следует из формулы (4.6.1), будет равно: 300 ·= 50, причем совершенно безразлично, бросать 300 раз одну и ту же кость или одновременно 300 одинаковых костей.

Несомненно, что поведение молекул газа в сосуде гораздо сложнее движения брошенной игральной кости. Но и здесь можно надеяться обнаружить определенные количественные закономерности, позволяющие вычислять статистические средние, если только ставить задачу так же, как в теории игр, а не как в классической механике. Нужно отказаться от неразрешимой задачи определения точного значения скорости молекулы в данный момент и попытаться найти вероятность того, что скорость имеет определенное значение.

Постоянная Больцмана перекидывает мост из макромира в микромир, связывая температуру с кинетической энергией молекул.

Людвиг Больцман — один из создателей молекулярно-кинетической теории газов, на которой зиждется современная картина взаимосвязи между движением атомов и молекул с одной стороны и макроскопическими свойствами материи, такими как температура и давление, с другой. В рамках такой картины давление газа обусловлено упругими ударами молекул газа о стенки сосуда, а температура — скоростью движения молекул (а точнее, их кинетической энергией).Чем быстрее движутся молекулы, тем выше температура.

Постоянная Больцмана дает возможность напрямую связать характеристики микромира с характеристиками макромира — в частности, с показаниями термометра. Вот ключевая формула, устанавливающая это соотношение:

1/2 mv 2 = kT

где m и v — соответственно масса и средняя скорость движения молекул газа, Т — температура газа (по абсолютной шкале Кельвина), а k — постоянная Больцмана. Это уравнение прокладывает мостик между двумя мирами, связывая характеристики атомного уровня (в левой части) с объемными свойствами (в правой части), которые можно измерить при помощи человеческих приборов, в данном случае термометров. Эту связь обеспечивает постоянная Больцмана k , равная 1,38 x 10 -23 Дж/К.

Раздел физики, изучающий связи между явлениями микромира и макромира, называется статистическая механика. В этом разделе едва ли найдется уравнение или формула, в которых не фигурировала бы постоянная Больцмана. Одно из таких соотношений было выведено самим австрийцем, и называется оно просто уравнение Больцмана :

S = k log p + b

где S — энтропия системы (см. Второе начало термодинамики), p — так называемый статистический вес (очень важный элемент статистического подхода), а b — еще одна константа.

Всю жизнь Людвиг Больцман в буквальном смысле опережал свое время, разрабатывая основы современной атомной теории строения материи, вступая в яростные споры с подавляющим консервативным большинством современного ему научного сообщества, считавшего атомы лишь условностью, удобной для расчетов, но не объектами реального мира. Когда его статистический подход не встретил ни малейшего понимания даже после появления специальной теории относительности, Больцман в минуту глубокой депрессии покончил с собой. Уравнение Больцмана высечено на его надгробном памятнике.

Boltzmann, 1844-1906

Австрийский физик. Родился в Вене в семье госслужащего. Учился в Венском университете на одном курсе с Йозефом Стефаном (см. Закон Стефана—Больцмана). Защитившись в 1866 году, продолжил научную карьеру, занимая в разное время профессорские должности на кафедрах физики и математики университетов Граца, Вены, Мюнхена и Лейпцига. Будучи одним из главных сторонников реальности существования атомов, сделал ряд выдающихся теоретических открытий, проливающих свет на то, каким образом явления на атомном уровне сказываются на физических свойствах и поведении материи.

Постоя́нная Бо́льцмана ( k {\displaystyle k} или k B {\displaystyle k_{\rm {B}}} ) - физическая постоянная , определяющая связь между температурой и энергией . Названа в честь австрийского физика Людвига Больцмана , сделавшего большой вклад в статистическую физику , в которой эта постоянная играет ключевую роль. Её значение в Международной системе единиц СИ согласно изменения определений основных единиц СИ (2018) точно равно

k = 1,380 649 × 10 − 23 {\displaystyle k=1{,}380\,649\times 10^{-23}} Дж / .

Связь между температурой и энергией

В однородном идеальном газе , находящемся при абсолютной температуре T {\displaystyle T} , энергия, приходящаяся на каждую поступательную степень свободы , равна, как следует из распределения Максвелла , k T / 2 {\displaystyle kT/2} . При комнатной температуре (300 ) эта энергия составляет 2 , 07 × 10 − 21 {\displaystyle 2{,}07\times 10^{-21}} Дж , или 0,013 эВ . В одноатомном идеальном газе каждый атом обладает тремя степенями свободы, соответствующими трём пространственным осям, что означает, что на каждый атом приходится энергия в 3 2 k T {\displaystyle {\frac {3}{2}}kT} .

Зная тепловую энергию, можно вычислить среднеквадратичную скорость атомов, которая обратно пропорциональна квадратному корню атомной массы. Среднеквадратичная скорость при комнатной температуре изменяется от 1370 м/с для гелия до 240 м/с для ксенона . В случае молекулярного газа ситуация усложняется, например, двухатомный газ имеет 5 степеней свободы - 3 поступательных и 2 вращательных (при низких температурах, когда не возбуждены колебания атомов в молекуле и не добавляются дополнительные степени свободы).

Определение энтропии

Энтропия термодинамической системы определяется как натуральный логарифм от числа различных микросостояний Z {\displaystyle Z} , соответствующих данному макроскопическому состоянию (например, состоянию с заданной полной энергией).

S = k ln ⁡ Z . {\displaystyle S=k\ln Z.}

Коэффициент пропорциональности k {\displaystyle k} и есть постоянная Больцмана. Это выражение, определяющее связь между микроскопическими ( Z {\displaystyle Z} ) и макроскопическими состояниями ( S {\displaystyle S} ), выражает центральную идею статистической механики.

Для постоянной, связанной с энергией излучения чёрного тела, смотри Постоянная Стефана-Больцмана

Значение постоянной k

Размерность

1,380 6504(24) 10 −23

8,617 343(15) 10 −5

1,3807 10 −16

Смотри также Значения в различных единицах ниже.

Постоянная Больцмана (k или k B ) - физическая постоянная, определяющая связь между температурой вещества и энергией теплового движения частиц этого вещества. Названа в честь австрийского физика Людвига Больцмана, сделавшего большой вклад в статистическую физику, в которой эта постоянная играет ключевую роль. Её экспериментальное значение в системе СИ равно

В таблице последние цифры в круглых скобках указывают стандартную погрешность значения постоянной. В принципе, постоянная Больцмана может быть получена из определения абсолютной температуры и других физических постоянных. Однако точное вычисление постоянной Больцмана с помощью основных принципов слишком сложно и невыполнимо при современном уровне знаний.

Экспериментально постоянную Больцмана можно определить с помощью закона теплового излучения Планка, описывающего распределение энергии в спектре равновесного излучения при определённой температуре излучающего тела, а также другими методами.

Существует связь между универсальной газовой постоянной и числом Авогадро , из которой следует значение постоянной Больцмана:

Размерность постоянной Больцмана такая же, как и у энтропии.

  • 1 История
  • 2 Уравнение состояния идеального газа
  • 3 Связь между температурой и энергией
    • 3.1 Соотношения газовой термодинамики
  • 4 Множитель Больцмана
  • 5 Роль в статистическом определении энтропии
  • 6 Роль в физике полупроводников: тепловое напряжение
  • 7 Применения в других областях
  • 8 Постоянная Больцмана в планковских единицах
  • 9 Постоянная Больцмана в теории бесконечной вложенности материи
  • 10 Значения в различных единицах
  • 11 Ссылки
  • 12 См. также

История

В 1877 г. Больцман впервые связал между собой энтропию и вероятность, однако достаточно точное значение постоянной k как коэффициента связи в формуле для энтропии появилось лишь в трудах М. Планка. При выводе закона излучения чёрного тела Планк в 1900–1901 гг. для постоянной Больцмана нашёл значение 1,346 10 −23 Дж/K, почти на 2,5% меньше принятого в настоящее время.

До 1900 г. соотношения, которые сейчас записываются с постоянной Больцмана, писались с помощью газовой постоянной R , а вместо средней энергии на одну молекулу использовалась общая энергия вещества. Лаконичная формула вида S = k log W на бюсте Больцмана стала таковой благодаря Планку. В своей нобелевской лекции в 1920 г. Планк писал:

Эта константа часто называется постоянной Больцмана, хотя, насколько я знаю, сам Больцман никогда не вводил её - странное состояние дел, при том, что в высказываниях Больцмана не было речи о точном измерении этой константы.

Такая ситуация может быть объяснена проведением в то время научных дебатов по выяснению сущности атомного строения вещества. Во второй половине 19 века существовали значительные разногласия в отношении того, являются ли атомы и молекулы реальными, либо они лишь удобный способ описания явлений. Не было единства и в том, являются ли "химические молекулы", различаемые по их атомной массе, теми же самыми молекулами, что и в кинетической теории. Далее в нобелевской лекции Планка можно найти следующее:

«Ничто не может лучше продемонстрировать положительную и ускоряющуюся скорость прогресса, чем искусство эксперимента за последние двадцать лет, когда было открыто сразу множество методов измерения массы молекул практически с той же точностью, что и измерение массы какой-нибудь планеты».

Уравнение состояния идеального газа

Для идеального газа справедлив объединённый газовый закон, связывающий давление P , объём V , количество вещества n в молях, газовую постоянную R и абсолютную температуру T :

В данном равенстве можно сделать замену . Тогда газовый закон будет выражаться через постоянную Больцмана и количество молекул N в объёме газа V :

Связь между температурой и энергией

В однородном идеальном газе, находящемся при абсолютной температуре T , энергия, приходящаяся на каждую поступательную степень свободы, равна, как следует из распределения Максвелла, kT / 2 . При комнатной температуре (≈ 300 K) эта энергия составляет Дж, или 0,013 эВ.

Соотношения газовой термодинамики

В одноатомном идеальном газе каждый атом обладает тремя степенями свободы, соответствующими трём пространственным осям, что означает, что на каждый атом приходится энергия 3kT / 2 . Это хорошо согласуется с экспериментальными данными. Зная тепловую энергию, можно вычислить среднеквадратичную скорость атомов, которая обратно пропорциональна квадратному корню из атомной массы. Среднеквадратичная скорость при комнатной температуре изменяется от 1370 м/с для гелия до 240 м/с для ксенона.

Кинетическая теория даёт формулу для среднего давления P идеального газа:

Учитывая, что средняя кинетическая энергия прямолинейного движения равна:

находим уравнение состояния идеального газа:

Это соотношение неплохо выполняется и для молекулярных газов; однако зависимость теплоёмкости изменяется, так как молекулы могут иметь дополнительные внутренние степени свободы по отношению к тем степеням свободы, которые связаны с движением молекул в пространстве. Например, двухатомный газ имеет уже приблизительно пять степеней свободы.

Множитель Больцмана

В общем случае система в равновесии с тепловым резервуаром при температуре T имеет вероятность p занять состояние с энергией E , что может быть записано с помощью соответствующего экспоненциального множителя Больцмана:

В данном выражении фигурирует величина kT с размерностью энергии.

Вычисление вероятности используется не только для расчётов в кинетической теории идеальных газов, но и в других областях, например в химической кинетике в уравнении Аррениуса.

Роль в статистическом определении энтропии

Основная статья : Термодинамическая энтропия

Энтропия S изолированной термодинамической системы в термодинамическом равновесии определяется через натуральный логарифм от числа различных микросостояний W , соответствующих данному макроскопическому состоянию (например, состоянию с заданной полной энергией E ):

Коэффициент пропорциональности k является постоянной Больцмана. Это выражение, определяющее связь между микроскопическими и макроскопическими состояниями (через W и энтропию S соответственно), выражает центральную идею статистической механики и является главным открытием Больцмана.

В классической термодинамике используется выражение Клаузиуса для энтропии:

Таким образом, появление постоянной Больцманаk можно рассматривать как следствие связи между термодинамическим и статистическим определениями энтропии.

Энтропию можно выразить в единицах k , что даёт следующее:

В таких единицах энтропия точно соответствует информационной энтропии.

Характерная энергия kT равна количеству теплоты, необходимому для увеличения энтропии S " на один нат.

Роль в физике полупроводников: тепловое напряжение

В отличие от других веществ, в полупроводниках существует сильная зависимость электропроводности от температуры:

где множитель σ 0 достаточно слабо зависит от температуры по сравнению с экспонентой, E A – энергия активации проводимости. Плотность электронов проводимости также экспоненциально зависит от температуры. Для тока через полупроводниковый p-n-переход вместо энергии активации рассматривают характерную энергию данного p-n перехода при температуре T как характерную энергию электрона в электрическом поле:

где q – , а V T есть тепловое напряжение, зависящее от температуры.

Данное соотношение является основой для выражения постоянной Больцмана в единицах эВ∙К −1 . При комнатной температуре (≈ 300 K) значение теплового напряжения порядка 25,85 милливольт ≈ 26 мВ.

В классической теории часто используют формулу, согласно которой эффективная скорость носителей заряда в веществе равна произведению подвижности носителей μ на напряженность электрического поля. В другой формуле плотность потока носителей связывается с коэффициентом диффузии D и с градиентом концентрации носителей n :

Согласно соотношению Эйнштейна-Смолуховского, коэффициент диффузии связан с подвижностью:

Постоянная Больцмана k входит также в закон Видемана-Франца, по которому отношение коэффициента теплопроводности к коэффициенту электропроводности в металлах пропорционально температуре и квадрату отношения постоянной Больцмана к электрическому заряду.

Применения в других областях

Для разграничения температурных областей, в которых поведение вещества описывается квантовыми или классическими методами, служит температура Дебая:

Бабочки, конечно, ничего не знают о змеях. Зато о них знают птицы, охотящиеся на бабочек. Птицы, плохо распознающие змей, чаще становятся...

  • Если octo на латыни «восемь», то почему октава содержит семь нот?

    Октавой называется интервал между двумя ближайшими одноименными звуками: до и до, ре и ре и т. д. С точки зрения физики «родство» этих...

  • Почему важных особ называют августейшими?

    В 27 году до н. э. римский император Октавиан получил титул Август, что на латыни означает «священный» (в честь этого же деятеля, кстати,...

  • Чем пишут в космосе

    Известная шутка гласит: «NASA потратило несколько миллионов долларов, чтобы разработать специальную ручку, способную писать в космосе....

  • Почему основа жизни - углерод?

    Известно порядка 10 миллионов органических (то есть основанных на углероде) и лишь около 100 тысяч неорганических молекул. Вдобавок...

  • Почему кварцевые лампы синие?

    В отличие от обычного стекла, кварцевое пропускает ультрафиолет. В кварцевых лампах источником ультрафиолета служит газовый разряд в парах ртути. Он...

  • Почему дождь иногда льет, а иногда моросит?

    При большом перепаде температур внутри облака возникают мощные восходящие потоки. Благодаря им капли могут долго держаться в воздухе и...