Принцип работы шгн на нефтяных скважинах. Штанговые глубинные насосы (ШГН): конструкция, принцип работы, разновидности. Конструкция, основные параметры и размеры

Две трети фонда (66%) действующих скважин стран СНГ (примерно 16,3% всего объема добычи нефти ) эксплуатируются ШСНУ. Дебит скважин составляет от десятков килограммов в сутки до нескольких тонн. Насосы спускают на глубину от нескольких десятков метров до 3000 м., а в отдельных скважинах на 3200 ¸ 3400 м.

Рис. 3.12. Схема установки штангового скважинного насоса

ШСНУ включает:

1. Наземное оборудование : станок-качалка (СК), оборудование устья.

2. Подземное оборудование : насосно-компрессорные трубы (НКТ), насос-ные штанги (НШ), штанговый скважинный насос (ШСН) и различные защитные устройства, улучшающие работу установки в осложненных условиях.

Отличительная особенность ШСНУ обстоит в том, что в скважине устанавливают плунжерный (поршневой) насос, который приводится в действие поверхностным приводом посредством колонны штанг (рис. 3.12).

Штанговая глубинная насосная установка (рис. 3.12) состоит из скважинного насоса 2 вставного или невставного типов, насосных штанг 4 насосно-компрессорных труб 3, подвешенных на планшайбе или в трубной подвеске 8, сальникового уплотнения 6, сальникового штока 7, станка-качалки 9, фундамента 10 и тройника 5. На приеме скважинного насоса устанавливается защитное приспособление в виде газового или песочного фильтра 1.

3.3.2.ШТАНГОВЫЕ СКВАЖИННЫЕ НАСОСЫ

ШСН обеспечивают откачку из скважин жидкости, обводненностью до 99% , абсолютной вязкостью до 100 мПа·с, содержанием твердых механических примесей до 0,5%, свободного газа на приеме до 25%, объемным содержанием сероводорода до 0,1%, минерализацией воды до 10 г/л и температурой до 1300С.

По способу крепления к колонне НКТ различают вставные (НСВ) и невставные (НСН) скважинные насосы (рис. 3.13, 3.14). У невставных (трубных) насосов цилиндр с седлом всасывающего клапана опускают в скважину на НКТ. Плунжер с нагнетательным и всасывающим клапаном опускают в скважину на штангах и вводят внутрь цилиндра. Плунжер с помощью специального штока соединен с шариком всасывающего клапана. Недостаток НСН - сложность его сборки в скважине, сложность и длительность извлечения насоса на поверхность для устранения какой-либо неисправности. Вставные насосы целиком собирают на поверхности земли и опускают в скважину внутрь НКТ на штангах. НСВ состоит из трех основных узлов: цилиндра, плунжера и замковой опоры цилиндра.

В трубных же насосах для извлечения цилиндра из скважины необходим подъем всего оборудования (штанг с клапанами, плунжером и НКТ). В этом коренное отличие между НСН и НСВ. При использовании вставных насосов в 2 ¸ 2,5 раза ускоряются спуско-подъемные операции при ремонте скважин и существенно облегчается труд рабочих. Однако подача вставного насоса при трубах данного диаметра всегда меньше подачи невставного.

Насос НСВ-1 – вставной одноступенчатый, плунжерный с втулочным цилиндром и замком наверху, нагнетательным, всасывающим и противо-песочным клапанами (рис. 3.13).

Рис. 3.13. Насосы скважинные вставные

1 – впускной клапан; 2 – цилиндр; 3 – нагнетательный клапан;

4 – плунжер; 5 – штанга; 6 – замок.

Рис. 3.14. Невставные скважинные насосы:

1 – всасывающий клапан; 2 – цилиндр; 3 – нагнетательный клапан;

4 – плунжер; 5 – захватный шток; 6 – ловитель

Насос НСВ спускается на штангах. Крепление (уплотнение посадками) происходит на замковой опоре, которая предварительно опускается на НКТ. Насос извлекается из скважины при подъеме только колонны штанг. Поэтому НСВ целесообразно применять в скважинах с небольшим дебитом и при больших глубинах спуска.

Невставной (трубный) насос представляет собой цилиндр, присоединенный к НКТ и вместе с ними спускаемый в скважину, а плунжер спускают и поднимают на штангах. НСН целесообразны в скважинах с большим дебитом, небольшой глубиной спуска и большим межремонтным периодом.

В зависимости от величины зазора между плунжером и цилиндром изготавливают насосы следующих групп посадок (исполнение «С» - т.е. с составным цилиндром):

Группа

Зазор, мм

До 0,045

0,02 - 0,07

0,07 – 0,12

0,12 – 0,17

Чем больше вязкость жидкости, тем выше группа посадки.

Условный размер насосов (по диаметру плунжера) и длина хода плунжера соответственно приняты в пределах:

для НСВ 29 – 57 мм и 1,2 ÷ 6 м;

НСН 32 – 95 мм и 0,6 ¸ 4,5 м.

Обозначение НСН2-32-30-12-0:

0 – группа посадки;

12х100 – наибольшая глубина спуска насоса, м;

30х100 – длина хода плунжера, мм;

32 – диаметр плунжера, мм.

Насосная штанга предназначена для передачи возвратно-поступательного движения плунжер насоса. Штанга представляет собой стержень круглого сечения с утолщенными головками на концах. Выпускаются штанги из легированных сталей диаметром (по телу) 16, 19, 22, 25 мм и длиной 8 м – для нормальных условий эксплуатации .

Для регулирования длины колонн штанг с целью нормальной посадки плунжера в цилиндр насоса имеются также укороченные штанги (футовки) длиной 1; 1,2; 1,5; 2 и 3 м.

Штанги соединяются муфтами. Имеются также трубчатые (наружный диаметр 42 мм, толщина 3,5 мм).

Начали выпускать насосные штанги из стеклопластика (АО «Очерский машиностроительный завод»), отличающиеся большей коррозионной стойкостью и позволяющие снизить энергопотребление до 20%.

Применяются непрерывные штанги «Кород» (непрерывные на барабанах, сечение - полуэллипсное).

Особая штанга - устьевой шток, соединяющий колонну штанг с канатной подвеской. Поверхность его полирована (полированный шток). Он изготавливается без головок, а на концах имеет стандартную резьбу.

Для защиты от коррозии осуществляют окраску, цинкование и т.п., а также применяют ингибиторы.

Устьевое оборудование насосных скважин предназначено для герметизации затрубного пространства, внутренней полости НКТ, отвода продукции скважин и подвешивания колонны НКТ.

Устьевое оборудование типа ОУ включает устьевой сальник, тройник, крестовину, запорные краны и обратные клапаны.

Устьевой сальник герметизирует выход устьевого штока с помощью сальниковой головки и обеспечивает отвод продукции через тройник. Тройник ввинчивается в муфту НКТ. Наличие шарового соединения обеспечивает самоустановку головки сальника при несоосности сальникового штока с осью НКТ, исключает односторонний износ уплотнительной набивки и облегчает смену набивки.

Колонна НКТ подвешена на конусе в крестовине и расположена эксцентрично относительно оси скважины, что позволяет проводить спуск приборов в затрубное пространство через специальный устьевой патрубок с задвижкой.

Станки-качалки - индивидуальный механический привод ШСН (табл.3.2, 3.3).

Таблица 3.2

Станок-качалка

Число ходов

балансира в мин.

Масса, кг

Редуктор

СКД-1,5-710

5÷15

3270

Ц2НШ-315

СКД4-2,1-1400

5÷15

6230

Ц2НШ-355

СКД6-2,5-2800

5÷14

7620

Ц2НШ-450

СКД8-3,0-4000

5÷14

11600

НШ-700Б

СКД10-3,5-5600

5÷12

12170

Ц2НШ-560

СКД12-3,0-5600

5÷12

12065

Ц2НШ-560

В шифре станка - качалки типа СКД, например СКД78-3-4000, указано: буквы - станок качалка дезаксиальный, 8 - наибольшая допускаемая нагрузка Рmax на головку балансира в точке подвеса штанг в тоннах (1т = 10 кН); 3 - наибольшая длина хода устьевого штока в м; 4000 - наибольший допускаемый крутящий момент М кр max на ведомом валу редуктора в кгс/м (1 кгс/м = 10-2кН·м).

Станок-качалка (рис.3.15) является индивидуальным приводом скважинного насоса.

Таблица 3.3

Станок-качалка

Длина устьевого штока, м

Число качаний балансира, мин

Мощность электро-двигателя, кВт

Масса, кг

СКБ80-3-40Т

1,3÷3,0

1,8÷12,7

15÷30

12000

СКС8-3,0-4000

1,4÷3,0

4,5÷11,2

22÷30

11900

ПФ8-3,0-400

1,8÷3,0

4,5÷11,2

22÷30

11600

ОМ-2000

1,2÷3,0

5÷12

11780

ОМ-2001

1,2÷3,0

2÷8

22/33

12060

ПНШ 60-2,1-25

0,9÷2,1

1,36÷8,33

7,5÷18,5

8450

ПНШ 80-3-40

1,2÷3,0

4,3÷12

18,5÷22

12400

Основные узлы станка-качалки - рама, стойка в виде усеченной четырехгранной пирамиды, балансир с поворотной головкой, траверса с шатунами, шарнирноподвешенная к балансиру, редуктор с кривошипами и противовесами. СК комплектуется набором сменных шкивов для изменения числа качаний, т.е. регулирование дискретное. Для быстрой смены и натяжения ремней электродвигатель устанавливается на поворотной раме-салазках.

Монтируется станок-качалка на раме, устанавливаемой на железобетонное основание (фундамент). Фиксация балансира в необходимом (крайнем верхнем) положении головки осуществляется с помощью тормозного барабана (шкива). Головка балансира откидная или поворотная для беспрепятственного прохода спускоподъемного и глубинного оборудования при подземном ремонте скважины. Поскольку головка балансира совершает движение по дуге, то для сочленения ее с устьевым штоком и штангами имеется гибкая канатная подвеска 17 (рис.3.15). Она позволяет регулировать посадку плунжера в цилиндр насоса или выход плунжера из цилиндра, а также устанавливать динамограф для исследования работы оборудования .

Амплитуду движения головки балансира (длина хода устьевого штока - 7 на рис. 3.12) регулируют путем изменения места сочленения кривошипа с шатуном относительно оси вращения (перестановка пальца кривошипа в другое отверстие).

За один двойной ход балансира нагрузка на СК неравномерная. Для уравновешивания работы станка-качалки помещают грузы (противовесы) на балансир, кривошип или на балансир и кривошип. Тогда уравновешивание называют соответственно балансирным, кривошипным (роторным) или комбинированным.

Блок управления обеспечивает управление электродвигателем СК в аварийных ситуациях (обрыв штанг, поломки редуктора, насоса, порыв трубопровода и т.д.), а также самозапуск СК после перерыва в подаче электроэнергии.

Выпускают СК с грузоподъемностью на головке балансира от 2 до 20 т.

Рис. 3.15. Станок-качалка типа СКД:

1 - подвеска устьевого штока; 2 - балансир с опорой; 3 - стойка; 4 - шатун;

5 -кривошип; 6 - редуктор; 7 - ведомый шкив; 8 - ремень; 9 - электродвигатель; 10-ведущий шкив; 11 - ограждение; 12 - поворотная плита; 13 - рама; 14 –проти-вовес; 15 - траверса; 16 - тормоз; 17 - канатная подвеска

Электродвигателями к СК служат короткозамкнутые асинхронные во влагоморозостойком исполнении трехфазные электродвигатели серии АО и электродвигатели АО2 и их модификации АОП2.

Частота вращения электродвигателей 1500 и 500 мин –1.

В настоящее время российскими заводами освоены и выпускаются новые модификации станков-качалок: СКДР и СКР (унифицированный ряд из 13 вариантов грузоподъемностью от 3 до 12 т.), СКБ, СКС, ПФ, ОМ, ПШГН, ЛП-114.00.000 (гидрофицированный). Станки-качалки для временной добычи могут быть мобильными (на пневмоходу) с автомобильным двигателем.

Наиболее распространенный способ добычи нефти – применение штанговых скважинных насосных установок (УШГН). Насосы спускают на глубину от нескольких со­тен метров до 2000 метров (в отдельных случаях до 3000 м). В скважине, оборудован­ной УШГН, подача жидкости осущест­вляется глубинным плунжерным на­сосом, который приводится в действие с помощью специ­ального привода станка-качалки (СК) посредством ко­лонны штанг.

Оборудование УШГН включает:

Наземное оборудование:

· Оборудование устья;

· Станок-качалка.

Подземное оборудование:

· Насосные штанги;

· Штанговый скважинный насос;

· Различные защитные устройства (газовый или песочный якорь, фильтр и т.д.).

Принцип работы УШГН

Электродвигатель через клиноремённую передачу и редуктор придаёт двум массивным кривошипам, расположенных с двух сторон редуктора, круговое движение. Крившипно - шатунный механизм в целом преобразо­вывает в возвратно-поступательное движение балан­сира, который враща­ется на опорной оси, укреплённой на стойке. Ба­лансир сообщает воз­вратно-поступательное движение канатной под­веске, штангам и плунжеру. При ходе плунжера вверх нагнетатель­ный клапан под действием жидкости закрывается и вся жидкость, на­ходящиеся под плунжером, поднимается вверх на высоту равную длине хода плунжера. В это время скважинная жидкость через всасы­вающий клапан заполняет цилиндр насоса. При ходе плунжера вниз всасывающий клапан закрывается, жидкость под плунже­ром сжима­ется, и открывается нагнетательный клапан. В цилиндр погру­жаются штанги, связанные с плунжером.

Таким образом, ШСН - поршневой насос однородного действия, а в це­лом комплекс из насоса и штанг - двойного действия.

В скважине, оборудованной УШГН, подача жидкости осуществляется глубинным плунжерным насо­сом, который приводится в действие с помо­щью специального привода СК посредством колонны штанг.

СК преобразует вращательное движение электродвигателя в воз­вратно-поступательное движение подвески штанг.

Краткая характеристика оборудования УШГН

2. Насосные штанги

Скважинные штанговые насосы (ОСТ 26-26-06-86) являются надеж­ным и экономичным эксплуатационным оборудованием нефтяных сква­жин, широко применяемых для отбора пластовой жидкости (смеси нефти, воды и газа).

Штанговые глубинные насосы (ШГН), применяются в скважинах:

· с дебитом от 5 до 150 м 3 /сут.;

· с глубиной спуска насоса до 2000м. и более;

· с кривизной ствола скважины до 8-10 (максимальное отклоне­ние от вертикали) при больших отклонениях по кривизне должны приме­няться специальные за­щитные приспособления для штанг и насоса;

· с газовым фактором до 150 м 3 /м 3 , при высоких газовых факто­рах применяются якоря (газосепара­торы);

Насосы разделяются на невставные (трубные) и вставные.

Невставные насосы.

Цилиндр спускается в скважину на насосных трубах без плунжера. Плунжер спускается отдельно на насосных штангах. Плунжер вводится в цилиндр вместе с подвешенным к плунжеру всасывающим клапаном. Чтобы плунжер довести до цилиндра насоса без повреждений через трубы, последние должны иметь внутренний диаметр больше наружного диа­метра плунжера (примерно на 6 мм). Применение НСН целесообразно в скважи­нах с большим дебитом, не­большой глубиной спуска и большим межре­монтным периодом.

а - невставной насос с штоком типа НН-1; б - не­вставной насос с ло­вите­лем типа НН-2: 1 - нагнета­тельные клапаны; 2 – цилиндры; 3 – плун­жеры; 4 - патрубки-удлинители; 5 - всасывающие клапаны; 6 - седла кону­сов; 7 - захватный шток; 8 - второй нагнетательный клапан; 9 – ловитель; 10 - наконечник для захвата клапана; в - вставной насос типа НВ-1: 1 – штанга; 2 – НКТ; 3 - посадочный ко­нус; 4 - замковая опора; 5 – цилиндр; 6 – плун­жер; 7 - направляющая трубка.

Рисунок 2.8 – Сборочный чертёж невставного насоса

Вставные насосы.

Цилиндр в сборе с плунжером и клапанами спускается на штангах. В этом случае на конце насосных труб заранее устанавливается специальное посадочное устройство - замковая опора, на которой происходит посадка и уплотнение насоса.

В НН-1(рис 2.3, а) всасывающий клапан 5 держится в седле конуса 6 и соединен с плунжером 3 специальным штоком 7. Это позволяет при подъеме штанг, следовательно, и плунжера сразу извлечь всасывающий клапан 5. Такая операция необходима не только для замены или ремонта

клапана, но и для спуска жидкости из насосных труб перед их подъемом.

В насосах НН-2 (рис 2.3, б) - два нагнетательных клапана. Это суще­ственно уменьшает (на объем плунжера) объем вредного пространства и повышает коэффициент наполнения при откачке газированной жидкости.

Вставные насосы НВ-1 имеют один или два клапана, размещенные в верхней и нижней части плунжера.

Насосные штанги.

Для передачи возвратно – поступательного движения от привода к плунжеру скважинного насоса используется колонна насосных штанг. Она собирается из отдельных штанг, соединенных муфтами.

Насосные штанги представляют собой стержни круглого поперечного сечения с высаженными концами, на которых располагается участок квадратного сечения и резьба.

Штанги выпускаются диаметрами 16, 19, 22, 26, а допускаемое напря­жение для наиболее широко распространенных марок сталей составляет 70…130 МПа.

Бóльшая часть добывающего фонда скважин нефтедобывающих предприятий оборудуется штанговыми насосными установками. Контроль работы штанговых насосов осуществляется, как известно, посредством динамометрирования. То есть посредством снятия диаграммы изменения нагрузки на устьевой шток при его ходе вверх-вниз.

Навык чтения динамограмм, умение их правильно интерпретировать необходимо как специалистам технологической службы нефтедобывающего предприятия, так и специалистам геологической службы.

Инженерам-технологам динамограммы помогают в принятии решений о необходимости текущего ремонта скважины (ТРС) или, например, о необходимости горячей обработки скважины для удаления отложений парафина без привлечения бригады ТРС.

Специалистам геологической службы навык чтения динамограмм необходим как самый первый этап в анализе причин снижения дебита добывающей скважины. Если динамограмма «рабочая», значит дело не в насосе. Значит можно переходить к поиску «геологических» причин снижения дебита.

Теоретическая динамограмма

Прежде чем перейти к разбору реальных динамограмм необходимо разобраться с теоретической динамограммой.

Как известно, динамограмма – это диаграмма изменения нагрузки на устьевой шток в зависимости от его хода. Теоретическая динамограмма – это такая идеализированная динамограмма, которая не учитывает силы трения, инерционные и динамические эффекты, возникающие в реальных условиях. Из-за таких эффектов прямые линии теоретической динамограммы превращаются в волнообразные, характерные для реальной. Также в теоретической динамограмме предполагается полной заполнение цилиндра штангового насоса, то есть коэффициент подачи насоса равен 1, чего в реальных условиях никогда не бывает (коэффициент подачи насоса обычно меньше единицы).

Теоретическая динамограмма имеет форму параллелограмма (рисунок 1).

Рисунок 1. Динамограмма теоретическая

Рисунок 2. Схема ШГН

Точка А на динамограмме - это крайнее нижнее положение плунжера насоса. Отрезок AB - ход вверх полированного штока. При этом происходит деформация (растяжение) штанг, но плунжер насоса все еще находится в крайнем нижнем положении. Отрезок BC - ход вверх полированного штока и плунжера насоса.

Точка C - крайнее верхнее положение плунжера насоса. Отрезок CD - ход вниз полированного штока. При этом происходит деформация (сжатие) штанг, но плунжер насоса все еще находится в крайнем верхнем положении. Отрезок DA - ход вниз полированного штока и плунжера насоса

В общем-то ничего сложного. Левая часть динамограммы характеризует работу насоса при нахождении плунжера в нижнем положении и соответственно работу всасывающего клапана насоса. Правая часть динамограммы - работу насоса при нахождении плунжера в верхнем положении и соответственно работу выкидного клапана насоса.

Имея на руках динамограмму работы насоса можно рассчитать дебит жидкости скважины. Динамограф, которым и снимают динамограммы, выдает в том числе и информацию о числе качаний (в минуту) станка-качалки и длине хода плунжера. Зная, какой насос спущен в скважину, рассчитать дебит не составляет труда. Формула для расчета теоретического дебита жидкости:

Q т = 1440 · π /4 · · L · N

где
Q т – дебит жидкости (теоретический), м 3 /сут
D – диаметр плунжера, м
L – длина хода, м
N – число качаний, кач./мин.

Длину хода и число качаний, как я уже сказал, нам выдает динамограф вместе с динамограммой. Диаметр плунжера обычно указан в названии насоса. Например, у насоса НГН-2-44 диаметр плунжера 44 мм, у НГН-2-57 соответственно 57 мм.

Для того чтобы получить фактический дебит жидкости скважины, необходимо полученный по формуле результат умножить на коэффициент подачи насоса (η ), который как мы уже знаем всегда меньше единицы.

Примеры реальных динамограмм

Фактические динамограммы имеют огромное количество форм и разновидностей. Все их здесь рассмотреть не получится, приведу только несколько характерных примеров:

Влияние газа, неполное заполнение плунжера

Не работают оба клапана

Обрыв или отворот штанг

Выход плунжера из цилиндра насоса

Отложения парафина

Прежде чем закончить статью рассмотрим еще один вопрос:

Как часто снимают динамограммы?

Политика различных нефтедобывающих компаний в отношении частоты снятия динамограмм может отличаться. Но, как правило, динамограммы снимают 1 раз месяц на обычном, ничем не осложненном фонде скважин.

При необходимости динамограммы снимают чаще (например, раз в неделю) на фонде скважин осложненных частыми отложениями парафина. Также динамограммы снимают при наличии соответствующих показаний (как говорят медицинские работники). Например, при снижении дебита жидкости скважины, при повышении динамического уровня, после изменения параметров работы штангового насоса (длина хода, число качаний) и других.

Если на скважине проводились геолого-технические мероприятия (ГТМ), то после запуска скважины до выхода ее на режим динамограммы снимаются, как правило, ежедневно. То же самое можно сказать и о новых скважинах запущенных из бурения.

Глубинные насосы штангового типа, которые обозначаются аббревиатурой ШГН, представляют собой устройства, при помощи которых можно откачивать жидкие среды из скважин, характеризующихся значительной глубиной. Использование такого насосного оборудования является одним из наиболее популярных способов откачивания нефти: приблизительно 70 % действующих сегодня нефтеносных скважин обслуживают именно штанговые насосы.

Конструктивные особенности и принцип действия

Основными элементами конструкции насоса штангового, который размещается в скважине на особой колонне, состоящей из подъемных труб, являются:

  • цилиндрический корпус, во внутренней части которого устанавливается пустотелый поршень (вытеснитель), называемый плунжером;
  • нагнетательный клапан, устанавливаемый в верхней части вытеснителя;
  • всасывающий клапан шарового типа, который размещается в нижней части неподвижного цилиндрического корпуса;
  • насосные штанги, соединенные с особым механизмом (качалкой) и плунжером и сообщающие последнему возвратно-поступательное движение (сама качалка, приводящая в действие скважинный штанговый насос (СШН), монтируется вне скважины – на поверхности земли).

Принцип работы глубинных штанговых насосов достаточно прост.

  1. При перемещении плунжера вверх в нижней части камеры насоса создается разрежение давления, что способствует всасыванию перекачиваемой жидкой среды через входной клапан.
  2. Когда плунжер начинает движение вниз, всасывающий клапан закрывается под действием давления перекачиваемой жидкой среды, и она через полый канал поршня и нагнетательный клапан начинает поступать в подъемные трубы.
  3. В ходе безостановочной работы штангового глубинного насоса перекачиваемая им жидкая среда начинает заполнять внутренний объем подъемных труб и в итоге направляется на поверхность.

Основные разновидности

По своему конструктивному исполнению штанговые глубинные насосы могут быть:

  • вставными;
  • невставными.

Опускание в скважину вставных штанговых глубинных насосов, как и их извлечение из нее, осуществляется в собранном виде. Для того чтобы выполнить такую операцию, плунжер помещают внутрь цилиндра, и вся конструкция на насосных штангах опускается в шахту.

Вставные ШГН также подразделяются на устройства двух видов:

  • вставные насосы с верхним расположением замка (НВ1);
  • насосы, замок которых располагается в их нижней части (НВ2).

Вставные устройства используют преимущественно для обслуживания скважин большой глубины, характеризующихся также небольшим дебитом откачиваемой из них жидкой среды. Использование таких насосов ШГН, для извлечения которых достаточно осуществить подъем штанг, с которыми соединена вся конструкция насоса, намного упрощает ремонт скважины, если в этом возникает необходимость.

Для того чтобы поместить в скважину штанговый глубинный насос невставного типа, необходимо выполнить более сложные действия. В скважину сначала помещают цилиндр, для чего используют НКТ, а только затем, используя штанги, в уже установленный цилиндр опускают плунжер с клапанами. Извлечение штангового глубинного насоса данного типа также осуществляется в два приема: в первую очередь из цилиндра насоса извлекается плунжер с клапанами, а затем из скважины поднимается цилиндр с НКТ.

Невставные устройства также подразделяются на несколько категорий:

  • насосные установки без ловителя (НН);
  • невставные глубинные насосы с захватным штоком (НН1);
  • невставные насосы с ловителем (НН2).

Среди перечисленных выше видов невставного оборудования наиболее популярными стали устройства, оснащенные ловителем (НН2). Объясняется высокая популярность последних тем, что механизм их опорожнения отличается простотой конструкции и, соответственно, большей надежностью в эксплуатации.

Выбор оборудования той или иной модели осуществляется в зависимости от конкретных условий эксплуатации, а также от характеристик жидкой среды, которую планируется откачивать с его помощью.

Как читать маркировку

Для того чтобы определить, к какой категории относится глубинный штанговый насос, а также узнать, какими характеристиками обладает такое устройство, достаточно расшифровать его маркировку. Такая маркировка, расшифровка которой не представляет больших сложностей, выглядит следующим образом:

XХХ Х – ХX – ХХ – ХX – Х

Буквы и цифры, присутствующие в такой маркировке, последовательно обозначают следующие параметры:

  • тип штангового насоса, который, как уже говорилось выше, может относиться к одной из следующих категорий: HB1, НВ2, НН, HH1, НН2;
  • тип конструктивного исполнения цилиндра и конструктивные особенности устройства в целом;
  • условный диаметр плунжера, измеряемый в мм (современные модели штанговых глубинных насосов по данному параметру могут относиться к устройствам следующих категорий: 29, 32, 38, 44, 57, 70, 95 и 102 мм);
  • максимальный ход, который может совершать плунжер (для того чтобы узнать, на какое расстояние в мм перемещается плунжер, значение в маркировке необходимо разделить на сто);
  • напор в м вод. ст., который способен обеспечить представленный глубинный насос (это значение в маркировке также необходимо разделить на сто);
  • группа посадки (по степени увеличения расстояния, имеющегося между плунжером и внутренними стенками цилиндра, рассматриваемые устройства могут соответствовать одной из следующих групп посадки: 0, 1, 2, 3).

Конструктивные элементы

Работоспособность и эффективность использования глубинных насосов штангового типа определяют следующие элементы, присутствующие в их конструкции:

  1. цилиндры, которые могут быть цельными или составными;
  2. плунжеры (обыкновенные или типа пескобрей);
  3. клапанные узлы шарикового типа, запорными элементами которых выступают седло и шарик;
  4. якорные башмаки, используемые для закрепления в штанговых глубинных насосов вставного типа (при установке таких элементов необходимо обеспечить герметизацию всасывающей полости насоса от нагнетательной).

Конечно, обязательным элементом конструкции штангового глубинного насоса является штанга – изготовленный из стали круглый стержень с высаженными концами. Основное назначение штанг, которые могут иметь различный диаметр (12, 16, 18, 22 и 25 мм), заключается в том, чтобы сообщать плунжеру возвратно-поступательное движение.

Поскольку в ходе работы глубинного насоса штанги испытывают серьезные нагрузки, для их производства используют высококачественные стали, а после изготовления подвергают нормализационному отжигу и закалке ТВЧ.

Штанговые насосные устройства в зависимости от конструктивных особенностей плунжера и цилиндра, а также от того, как расположен их якорный башмак, могут относиться к одной из 15 категорий.

Добыча нефти при помощи штанговых насосов – самый распространенный способ искусственного подъема нефти, что объясняется их простотой, эффективностью и надежностью. Как минимум две трети фонда действующих добывающих скважин эксплуатируются установками ШГН.

Перед другими механизированными способами добычи нефти УШГН имеют следующие преимущества:

    обладают высоким коэффициентом полезного действия;

    проведение ремонта возможно непосредственно на промыслах;

    для первичных двигателей могут быть использованы различные приводы;

    установки ШГН могут применяться в осложненных условиях эксплуатации - в пескопроявляющих скважинах, при наличии в добываемой нефти парафина, при высоком газовом факторе, при откачке коррозионной жидкости.

Глубинный штанговый насос в простейшем виде состоит из плунжера, движущегося вверх-вниз по хорошо подогнанному цилиндру. Плунжер снабжен обратным клапаном, который позволяет жидкости течь вверх, но не вниз. Обратный клапан, называемый также выкидным, в современных насосах обычно представляет собой клапан типа шар-седло. Второй клапан, всасывающий, - это шаровой клапан, расположенный внизу цилиндра также позволяет жидкости течь вверх, но не вниз.

ШСНУ включает:

Наземное оборудование: станок-качалка (СК), оборудование устья.

Подземное оборудование: насосно-компрессорные трубы (НКТ), насосные штанги (НШ), штанговый скважинный насос (ШСН) и различные защитные устройства, улучшающие работу установки в осложненных условиях.

Отличительная особенность УШСН состоит в том, что в скважине устанавливают плунжерный (поршневой) насос, который приводится в действие поверхностным приводом посредством колонны штанг

По способу крепления к колонне НКТ различают вставные (НСВ) и невставные (НСН) скважинные насосы. Вставные штанговые насосы спускают в скважину в собранном виде. Предварительно в скважину на НКТ спускается специальное замковое приспособление, а насос на штангах спускают в уже спущенные НКТ. Соответственно для смены такого насоса не требуется лишний раз производить спуск-подъем труб.

Невставные насосы спускаются в полуразобранном виде. Сначала на НКТ спускают цилиндр насоса. А затем на штангах спускают плунжер с обратным клапаном. Поэтому при необходимости замены такого насоса приходится поднимать из скважины сначала плунжер на штангах, а потом и НКТ с цилиндром.

И тот и другой вид насоса имеет как свои преимущества, так и недостатки. Для каждых конкретных условий применяют наиболее подходящий тип. Например, при условии содержания в нефти большого количества парафина предпочтительно применение невставных насосов. Парафин, откладываясь на стенках НКТ, может заблокировать возможность поднятия плунжера вставного насоса. Для глубоких скважин предпочтительнее использовать вставной насос, чтобы снизить затраты времени на спуск-подъем НКТ при смене насоса.